[1] Wang, J., Sun, S. Hu, G. Yang, Y. Tang, L. Li., P. Zhang, G., "
Exploring the potential benefits of using metasurface for galloping energy harvesting", Energy Conversion and Management, Vol. 243, No. 2021,
https://doi.org/10.1016/j.enconman.2021.114414.
[2] Zuo, H., Tan, J.,Wei, K., Huang, Z., Zhong., D., F., "Effects of different poses and wind speeds on wind-induced vibration characteristics of a dish solar concentrator system", Renewable Energy, Vol. 168, No. 2021, https://doi.org/10.1016/j.renene.2020.12.127.
[3] Hu, W., Jiaqiang, E., Tan, Y., Zhang. F.,, Liao, G., "
Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway", Energy, Vol. 247, No. 2022,
https://doi.org/10.1016/j.energy.2022.123454.
[4] Liu, Q., Qin, W., Zhou, Z., Shang., M., H., "
Harvesting low-speed wind energy by bistable snap-through and amplified inertial force", Energy, Vol. 284, No. 2023,
https://doi.org/10.1016/j.energy.2023.129330.
[5] Moazen, M., Saghafi, M., "Investigating the environmental impacts of developing application of wind turbines and the need for the related policies", epprjournal, Vol. 9, No. 2, pp. 194-216, 2023, (in Persian) http://epprjournal.ir/article-1-1128-fa.html.
[6] Tang, L., Zhao, L., Yang,Y.,, Lefeuvre, E., "
Equivalent circuit representation and analysis of galloping-based wind energy harvesting", IEEE/ASME transactions on mechatronics, Vol. 20, No. 2, 2014, https://doi.org/
10.1109/TMECH.2014.2308182.
[7] Perelli, A., Zunino, R. Rossi, F., Agata, V., "A piezoelectric power supplier for autonomous underwater sensors", 2016.
[8] Armandei, M., Fernandes., A.C., A.B., "Hydroelastic buffeting assessment over a vertically hinged flat plate", Experimental Techniques, Vol. 40, No. 2, 2016, https://doi.org/10.1007/s40799-016-0084-y.
[9] Dai, H., Abdelmoula, H., Abdelkefi., A,. Wang, L., "Towards control of cross-flow-induced vibrations based on energy harvesting", Nonlinear Dynamics, Vol. 88, No. 2017, https://doi.org/10.1007/s11071-017-3380-x.
[10] Xue, X., Xiang, H., Ci.,Y., J., "
A sustainable galloping piezoelectric energy harvesting wind barrier for power generation on railway bridges", Energy, Vol. 320, No. 2025,
https://doi.org/10.1016/j.energy.2025.135135.
[11] Zhang, Z., Xiang., H., Tang, L., "
Modeling, analysis and comparison of four charging interface circuits for piezoelectric energy harvesting", Mechanical Systems and Signal Processing, Vol. 152, No. 2021,
https://doi.org/10.1016/j.ymssp.2020.107476.
[12] Thein, C.K., Foong., F.M., Shu, Y.-C., "
Spring amplification and dynamic friction modelling of a 2DOF/2SDOF system in an electromagnetic vibration energy harvester–Experiment, simulation, and analytical analysis", Mechanical Systems and Signal Processing, Vol. 132, No. 2019,
https://doi.org/10.1016/j.ymssp.2019.06.028.
[13] Cai, Q.-l., Zhu, S., "
Enhancing the performance of electromagnetic damper cum energy harvester using microcontroller: Concept and experiment validation", Mechanical Systems and Signal Processing, Vol. 134, No. 2019,
https://doi.org/10.1016/j.ymssp.2019.106339.
[14] Khan, F. U., Qadir, M.U., "State-of-the-art in vibration-based electrostatic energy harvesting", Journal of Micromechanics and Microengineering, Vol. 26, No. 10, 2016, https://doi.org/10.1088/0960-1317/26/10/103001.
[15] Liu, Q., Qin, W., Yang, Y., Zhou, Z., "
Promote performance of vibration energy harvesting by amplified inertial force and clamped piezoelectric beams", Mechanical Systems and Signal Processing, Vol. 178, No. 2022,
https://doi.org/10.1016/j.ymssp.2022.109291.
[16] Ren, Z., L. Wu, Y. Pang, W. Zhang.,R. Yang, "
Strategies for effectively harvesting wind energy based on triboelectric nanogenerators", Nano Energy, Vol. 100, No. 2022,
https://doi.org/10.1016/j.nanoen.2022.107522.
[17] Safaei, M., SodaNo., H. A., Anton, S.R., "A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018)", Smart materials and structures, Vol. 28, No. 11, 2019, https://doi.org/10.1088/1361-665X/ab36e4.
[18] Zarei, M.Sh, "Energy harvesting from smart nanocomposite microbeams using piezoelectric materials", Energy Engineering and Management, Vol. 13, No. 2, pp. 128–139, 2023, (in Persian)
[19]. Abolhasani, M.M., Soleimani, H., "
Preparation and evaluation of a piezoelectric transducer based on PVDF nanowires",
Energy Engineering and Management, Vol. 12, No. 3, 2023, (in Persian)
https://doi.org/10.22052/12.3.106.
[20] Dai, H., Abdelkefi, A., Javed., U., Wang, L., "Modeling and performance of electromagnetic energy harvesting from galloping oscillations", Smart Materials and Structures, Vol. 24, No. 4, 2015, https://doi.org/10.1088/0964-1726/24/4/045012.
[21] Abdelmoula, H., Abdelkefi, A., "
The potential of electrical impedance on the performance of galloping systems for energy harvesting and control applications", Journal of Sound and Vibration, Vol. 370, No. 2016,
https://doi.org/10.1016/j.jsv.2016.01.037.
[22] Hu, G., Lan, C., Tang, L., Zhou.,B., Yang, Y., "
Dynamics and power limit analysis of a galloping piezoelectric energy harvester under forced excitation", Mechanical Systems and Signal Processing, Vol. 168, No. 2022,
https://doi.org/10.1016/j.ymssp.2021.108724.
[23] Li, Z., Peng, X., Gong, Y., Zhu, C., Zhang, L., Peng, Y., "Experimental research of a dual-beam compressive-mode piezoelectric energy harvester," in Journal of Physics: Conference Series, 2023, Vol. 2418, No. 1: IOP Publishing, p. 012076, https://doi.org/10.1088/1742-6596/2418/1/012076.
[24] Zhang, L., Xu, X., Han, Q., Qin, Z. Chu, F., "Energy harvesting of beam vibration based on piezoelectric stacks", Smart Materials and Structures, Vol. 28, No. 12, 2019, https://doi.org/10.1088/1361-665X/ab4e09.
[25] Jiang, B., Zhu, F., Yang,Y., Zhu,J., Yang., Y., M., "A hybrid piezoelectric and electromagnetic broadband harvester with double cantilever beams", Micromachines, Vol. 14, No. 2, 2023, https://doi.org/10.3390/mi14020240.
[26] Zhang, L., Dai, H., Abdelkefi, A., Lin., S., Wang, L., "
Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters", Applied Energy, Vol. 254, No. 2019,
https://doi.org/10.1016/j.apenergy.2019.113737.
[27] Shang, M., Qin, W., Li,H., Liu., Q., Wang, H., "
Harvesting vibration energy by novel piezoelectric structure with arc-shaped branches", Mechanical Systems and Signal Processing, Vol. 200, No. 2023,
https://doi.org/10.1016/j.ymssp.2023.110577.
[28] Xie, Z., Wang, T. Kwuimy,C.K., Shao., Y., Huang, W., "Design, analysis and experimental study of a T-shaped piezoelectric energy harvester with internal resonance", Smart Materials and Structures, Vol. 28, No. 8, 2019, https://doi.org/10.1088/1361-665X/ab2e15.
[29] Chen, J., Liu. J.,, Bao, B., "Dual-source energy harvester for collecting both flow-induced and multi-directional vibratory energies", Nonlinear Dynamics, Vol. 113, No. 4, 2025, https://doi.org/10.1007/s11071-024-10392-6.
[30] e Silva, A.G.P., Sobrinho, J.M.B., da Rocha SoutoC., Ries., A. de Castro, A.C. "
Design, modelling and experimental analysis of a piezoelectric wind energy generator for low-power applications", Sensors and Actuators A: Physical, Vol. 317, No. 2021,
https://doi.org/10.1016/j.sna.2020.112462.
[31] Hosseini, R., Hamedi, M. "An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester", Microsystem Technologies, Vol. 22, No. 2016, https://doi.org/10.1007/s00542-015-2583-7.
[32] Hosseini Latafati, H.S., Moghadam, S.S. "
Vibration energy harvesting using a cantilever beam with double piezoelectric layers",
Mechanics of Structures and Fluids, Vol. 7, No. 1, 2017, (in Persian) https://doi.org/
10.22044/jsfm.2017.945.
[33] Zhao, L., Yang,Y., "
Toward Small‐Scale Wind Energy Harvesting: Design, Enhancement, Performance Comparison, and Applicability", Shock and Vibration, Vol. 2017, No. 1, 2017,
https://doi.org/10.1155/2017/3585972.
[34] Abdelkefi, A., Hajj., M.R. A., Nayfeh, H., "Power harvesting from transverse galloping of square cylinder", Nonlinear dynamics, Vol. 70, No. 2012, https://doi.org/10.1007/s11071-012-0538-4.
[35] Tabesh, A., Fréchette, L.G., "On the concepts of electrical damping and stiffness in design of a piezoelectric bending beam energy harvester", Proc. Power MEMS 2009, Vol. No. 2009.
[36] Tabesh, A., Frechette, L.G., "An improved small-deflection electromechanical model for piezoelectric bending beam actuators and energy harvesters", Journal of Micromechanics and Microengineering, Vol. 18, No. 10, 2008, https://doi.org/10.1088/0960-317/18/10/104009.
[37] Barrero-Gil, A., Alonso., G., Sanz-Andres, A., "
Energy harvesting from transverse galloping", Journal of Sound and Vibration, Vol. 329, No. 14, 2010,
https://doi.org/10.1016/j.jsv.2010.01.028.
[38] Païdoussis, M.P., Price., S.J. De Langre,E., Fluid-structure interactions: cross-flow-induced instabilities, Cambridge. 2011.
[39] Shaukat, H., Ali, A., Bibi, S., Altabey, W.A., Noori., M., Kouritem, S.A., "
A Review of the recent advances in piezoelectric materials, energy harvester structures, and their applications in analytical chemistry", Applied Sciences, Vol. 13, No. 3, 2023,
https://doi.org/10.3390/app13031300.
[40] Zhou, J., He, L. Liu,L., Yu, G., Gu., X. Cheng, G., "
Design and research of hybrid piezoelectric-electromagnetic energy harvester based on magnetic couple suction-repulsion motion and centrifugal action", Energy Conversion and Management, Vol. 258, No. 2022,
https://doi.org/10.1016/j.enconman.2022.115504.
[41] Ali, A., Ali, S., Shaukat, H., Khalid, E., Behram, L., Rani, H., Altabey, W.A., Kouritem., S.A., Noori, M., "
Advancements in piezoelectric wind energy harvesting: A review", Results in Engineering, Vol. 21, No. 2024,
https://doi.org/10.1016/j.rineng.2024.101777.
[42] Zhang, S.L., Xu, M. Zhang, C., Wang, Y.-C., Zou, H., He, X. Wang., Z. Wang, Z.L., "
Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect", Nano Energy, Vol. 48, No. 2018,
https://doi.org/10.1016/j.nanoen.2018.03.062.
[43] Zhao, D., Hu, X. Tan, T., Yan.,Z. Zhang, W., "
Piezoelectric galloping energy harvesting enhanced by topological equivalent aerodynamic design", Energy Conversion and Management, Vol. 222, No. 2020,
https://doi.org/10.1016/j.enconman.2020.113260.
[44] Zheng, P., Qi, L. Sun, M. Luo., D. Zhang, Z. "
A novel wind energy harvesting system with hybrid mechanism for self-powered applications in subway tunnels", Energy, Vol. 227, No. 2021,
https://doi.org/10.1016/j.energy.2021.120446.
[45] Wang, G., Song, R., Luo,L., Yu,P. Yang., X., Zhang, L., "
Multi-piezoelectric energy harvesters array based on wind-induced vibration: Design, simulation, and experimental evaluation", Energy, Vol. 300, No. 2024,
https://doi.org/10.1016/j.energy.2024.131509.
[46] Chen, J., Nabulsi, N., Wang, W., Kim, J. Y., Kwon., M.K. J.H., "
Output characteristics of thin-film flexible piezoelectric generators: A numerical and experimental investigation", Applied Energy, Vol. 255, No. 2019,
https://doi.org/10.1016/j.apenergy.2019.113856.
[47] Alshdefat, A., Al-Oran., O., Alhadidi, A.H., "
Self-adjustable nonlinear galloping energy harvester under actual wind conditions", Results in Engineering, Vol. 25, No. 2025,
https://doi.org/10.1016/j.rineng.2025.104452.
[48] Zou, H.X., Zhao, L.C. Gao, Q.H. Zuo, L. Liu, F.R. Tan, T. Wei., K.X., Zhang, W.M., "
Mechanical modulations for enhancing energy harvesting: Principles, methods and applications", Applied Energy, Vol. 255, No. 2019,
https://doi.org/10.1016/j.apenergy.2019.113871.
[49] Cheng, S., Wang., N. Arnold, D.P., "Modeling of magnetic vibrational energy harvesters using equivalent circuit representations", Journal of Micromechanics and Microengineering, Vol. 17, No. 11, 2007, https://doi.org/10.1088/0960-1317/17/11/021.