[1] Yamaguchi, M., Yamada, H., Katsumata, Y., Lee, K.H., Araki, K., Kojima, N., "Efficiency potential and recent activities of high-efficiency solar cells", Journal of Materials Research, Vol. 32, No. 18, pp. 3445–3457, 2017, https://doi.org/10.1557/jmr.2017.335.
[2] Zhang, T., Wang, M., Yang, H., "A review of the energy performance and life-cycle assessment of building-integrated photovoltaic (BIPV) systems", Energies, Vol. 11, No. 11, p. 3157, 2018, https://doi.org/10.3390/en11113157.
[3] Williams, B.L., Major, J.D., Bowen, L., Phillips, L., Zoppi, G., Forbes, I., Durose, K., "Challenges and prospects for developing CdS/CdTe substrate solar cells on Mo foils", Solar Energy Materials and Solar Cells, Vol. 124, pp. 31–45, 2014, https://doi.org/10.1016/j.solmat.2014.01.017.
[4] Green, M.A., Dunlop, E.D., Hohl‐Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X., "Solar cell efficiency tables (Version 61)", Progress in Photovoltaics: Research and Applications, Vol. 31, No. 1, pp. 3–16, 2023, https://doi.org/10.1002/pip.3646.
[5] Wilson, G.M., Al-Jassim, M., Metzger, W.K., Glunz, S.W., Verlinden, P., Xiong, G., Mansfield, L.M., Stanbery, B.J., Zhu, K., Yan, Y., et al., "The 2020 photovoltaic technologies roadmap", Journal of Physics D: Applied Physics, Vol. 53, No. 49, 493001, 2020, https://doi.org/10.1088/1361-6463/ab9c6a.
[6] Echendu, O.K., Dejene, F.B., Dharmadasa, I.M., "An investigation of the influence of different transparent conducting oxide substrates/front contacts on the performance of CdS/CdTe thin-film solar cells", Journal of Materials Science: Materials in Electronics, Vol. 28, No. 24, pp. 18865–18872, 2017, https://doi.org/10.1007/s10854-017-7838-x.
[7] Hatton, P., Abbas, A., Kaminski, P., Yilmaz, S., Watts, M., Walls, M., Goddard, P., Smith, R., "Inert gas bubble formation in magnetron sputtered thin-film CdTe solar cells", Proceedings of the Royal Society A, Vol. 476, No. 2240, 20200056, 2020, https://doi.org/10.1098/rspa.2020.0056.
[8] Akhtaruzzaman, M., Shahiduzzaman, M., Amin, N., Muhammad, G., Islam, M.A., Sobayel, K., Sopian, K., "Impact of Ar flow rates on micro-structural properties of WS₂ thin film by RF magnetron sputtering", Nanomaterials, Vol. 11, No. 7, 1635, 2021, https://doi.org/10.3390/nano11071635.
[9] Hossain, M.S., Rahman, K.S., Karim, M.R., Aijaz, M.O., Dar, M.A., Shar, M.A., Misran, H., Amin, N., "Impact of CdTe thin film thickness in ZnₓCd₁₋ₓS/CdTe solar cell by RF sputtering", Solar Energy, Vol. 180, pp. 559–571, 2019, https://doi.org/10.1016/j.solener.2019.01.019.
[10] Olusola, O.I., Madugu, M.L., Ojo, A.A., Dharmadasa, I.M., "Development of CdMnTe thin films using electroplating technique for opto-electronic device applications", Journal of Materials Science: Materials in Electronics, Vol. 31, No. 24, pp. 22151–22161, 2020, https://doi.org/10.1007/s10854-020-04717-5.
[11] Gawron, W., Sobieski, J., Manyk, T., Kopytko, M., Madejczyk, P., Rutkowski, J., "MOCVD grown HgCdTe heterostructures for medium wave infrared detectors", Coatings, Vol. 11, No. 5, 611, 2021, https://doi.org/10.3390/coatings11050611.
[12] Arya, R.R., Sarro, P.M., Loferski, J.J., "Efficient cadmium sulfide on silicon solar cells", Applied Physics Letters, Vol. 41, No. 4, pp. 355–357, 1982, https://doi.org/10.1063/1.93511.
[13] Romeo, N., Bosio, A., Canevari, V., Podestà, A., "Recent progress on CdTe/CdS thin film solar cells", Solar Energy, Vol. 77, No. 6, pp. 795–801, 2004, https://doi.org/10.1016/j.solener.2004.07.011.
[14] Britt, J., Ferekides, C., "Thin-film CdS/CdTe solar cell with 15.8% efficiency", Applied Physics Letters, Vol. 62, No. 22, pp. 2851–2852, 1993, https://doi.org/10.1063/1.109629.
[15] Romeo, A., Khrypunov, G., Kurdesau, F., Arnold, M., Bätzner, D.L., Zogg, H., Tiwari, A.N., "High-efficiency flexible CdTe solar cells on polymer substrates", Solar Energy Materials and Solar Cells, Vol. 90, No. 18, pp. 3407–3415, 2006, https://doi.org/10.1016/j.solmat.2005.09.020.
[16]Burgelman, M., Nollet, P., Degrave, S., "Modelling polycrystalline semiconductor solar cells", Thin Solid Films, Vol. 361–362, pp. 527–532, 2000, https://doi.org/10.1016/S0040-6090(99)00825-1.
[17] Sites, J.R., Mauk, P.H., "Diode quality factor determination for thin-film solar cells", Solar Cells, Vol. 27, No. 1–4, pp. 411–417, 1989, https://doi.org/10.1016/0379-6787(89)90050-1.
[18] Dharmadasa, I.M., Bingham, P.A., Echendu, O.K., Salim, H.I., Druffel, T., Dharmadasa, R., Sumanasekera, G.U., et al., "Fabrication of CdS/CdTe-based thin film solar cells using an electrochemical technique", Coatings, Vol. 4, No. 3, pp. 380–415, 2014, https://doi.org/10.3390/coatings4030380.
[19] Kartopu, G., Turkay, D., Ozcan, C., Hadibrata, W., Aurang, P., Yerci, S., Uzum, A., et al., "Progress in upscaling CdTe thin film PV manufacturing using MOCVD", Solar Energy Materials and Solar Cells, Vol. 191, pp. 78–85, 2018, https://doi.org/10.1016/j.solmat.2018.11.002.
[20]Major, J.D., Treharne, R.E., Phillips, L.J., Durose, K., "A low-cost non-toxic post-growth activation step for CdTe solar cells", Nature, Vol. 511, No. 7509, pp. 334–337, 2014, https://doi.org/10.1038/nature13435.
[21] McCandless, B.E., Sites, J.R., "Cadmium telluride solar cells", Handbook of Photovoltaic Science and Engineering, pp. 600–641, 2011, https://doi.org/10.1002/9780470974704.ch14.
[22] Spalatu, N., Hiie, J., Mikli, V., Krunks, M., Valdna, V., Maticiuc, N., Raadik, T., Caraman, M., "Postdeposition processing of CdTe thin films: The effect of CdCl₂ activation", Thin Solid Films, Vol. 582, pp. 128–133, 2015, https://doi.org/10.1016/j.tsf.2014.11.004.
[23] Swanson, D.E., Sites, J.R., Sampath, W.S., "Co-sublimation of CdSeTe/CdTe thin-film photovoltaic devices with greater than 22% efficiency", IEEE Journal of Photovoltaics, Vol. 7, No. 6, pp. 1581–1586, 2017, https://doi.org/10.1109/JPHOTOV.2017.2748593
[24] Li, C., Wu, Y., Poplawsky, J., Pennycook, T.J., Paudel, N., Yin, W., Haigh, S.J., et al., "Grain-boundary-enhanced carrier collection in CdTe solar cells", Physical Review Letters, Vol. 112, No. 15, 156103, 2014, https://doi.org/10.1103/PhysRevLett.112.156103.
[25]Munshi, A.H., Kephart, J.M., Abbas, A., Raguse, J.M., Beaudry, J.N., Barth, K.L., Walls, J.M., Sampath, W.S., "Polycrystalline CdTe photovoltaics with efficiency over 21% through improved hole collection", Solar Energy Materials and Solar Cells, Vol. 176, pp. 9–18, 2018, https://doi.org/10.1016/j.solmat.2017.11.031.
[26] Swarnkar, A., Marshall, A.R., Sanehira, E.M., Chernomordik, B.D., Moore, D.T., Christians, J.A., Chakrabarti, T., Luther, J.M., "Quantum dot–induced phase stabilization of α-CsPbI₃ perovskite for high-efficiency photovoltaics", Science Advances, Vol. 10, No. 8, eadl2835, 2024, https://doi.org/10.1126/sciadv.adl2835.
[27] Luo, D., Su, R., Zhang, W., Gong, Q., Zhu, R., "Minimizing non-radiative recombination losses in perovskite solar cells", Nature Reviews Materials, Vol. 9, No. 3, pp. 215–232, 2024, https://doi.org/10.1038/s41578-023-00631-5.
[28] Liu, C., Yang, Y., Xia, X., Ding, Y., Arain, Z., An, S., Liu, X., et al., "Improved photovoltaic performance of CdTe solar cells by absorber surface modification", Solar Energy Materials and Solar Cells, Vol. 268, 112758, 2024, https://doi.org/10.1016/j.solmat.2023.112758.
[29] Green, M.A., Dunlop, E.D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G., Hao, X., "
Solar cell efficiency tables (Version 63)", Progress in Photovoltaics: Research and Applications, Vol. 32, No. 1, pp. 3–13, 2024,
https://doi.org/10.1002/pip.3750.