افزایش بهره‌وری سلول خورشیدی پروسکایتی با الکترود کربن به‌وسیلۀ نانوذرات جفت‌شدۀ پلاسمونیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی برق، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

2 گروه مهندسی برق، واحد لاهیجان، دانشگاه آزاد اسلامی،لاهیجان، ایران

3 گروه مهندسی برق ، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

چکیده

این مطالعه، بهبود بازدهی تبدیل توان سلول‌ خورشیدی پروسکایت‌هالید آلی-معدنی لایه‌نازک را با تعبیۀ نانوذرات پلاسمونیک کروی جفت‌شده دارای ساختار پوسته-هسته در لایۀ جاذب بررسی می‌کند. به‌منظور افزایش پایداری شیمیایی و حرارتی، به‌جای استفاده از نانوذرات فلزی سنتی، از نانوذرات پوسته-هسته در لایۀ جاذب استفاده شده است. معادلات ماکسول برای تجزیه‌وتحلیل عملکرد میدان الکتریکی و تحلیل اپتیکی حل شده‌اند. درعین‌حال، پارامترهای الکتریکی این سلول‌های خورشیدی پروسکایت ازطریق شبیه‌سازی عددی معادلات پواسون و پیوستگی به دست آمده است. در حالت بهینه‌سازی‌شدۀ سلول خورشیدی پروسکایت، پارامترهای کلیدی ازجمله ولتاژ مدار باز V 056/1، چگالی جریان اتصال کوتاه (mA/cm2) 885/22، ضریب پرشدگی 70/85% و بازدهی تبدیل توان حدود 21% به دست آمده‌اند. همچنین، استفاده از لایۀ جاذب نازک پروسکایت موجب کاهش سمیت سرب شده است. این مطالعه یک نقشۀ راه جامع برای به‌کارگیری نانوذرات جفت‌شدۀ پوسته-هسته‌ در سلول‌های خورشیدی پروسکایت لایه‌نازک با بازدهی بالا ارائه می‌دهد و بر مزیت‌های استفاده از این نانوذرات برای بهبود عملکرد و کاهش سمیت تأکید دارد.

کلیدواژه‌ها

موضوعات


[1] Alkhalayfeh, M. A., Aziz, A. A., Pakhuruddin, M. Z., Katubi, K. M. M., "Recent advances of perovskite solar cells embedded with plasmonic nanoparticles", Physica Status Solidi (a), Vol. 218, No. 17, p. 2100310, 2021,  https://doi.org/10.1002/pssa.202100310.
[2] Green, M. A., Ho-Baillie, A., Snaith, H. J., "The emergence of perovskite solar cells", Nature Photonics, Vol. 8, No. 7, pp. 506-514, 2014,  https://doi.org/10.1038/nphoton.2014.134.
[3] Jangjoy, A., Bahador, H., Heidarzadeh, H., "Design of an ultra-thin silicon solar cell using localized surface plasmonic effects of embedded paired nanoparticles", Optics Communications, Vol. 450, pp. 216-221, 2019,  https://doi.org/10.1016/j.optcom.2019.06.007.
[4] Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells", Journal of the American Chemical Society, Vol. 131, No. 17, pp. 6050-6051, 2009,  https://doi.org/10.1021/ja809598r.
[5] Jangjoy, A., Matloub, S., "Optimizing carbon-based perovskite solar cells with pyramidal core–shell nanoparticles for high efficiency", Plasmonics, Vol. 20, No. 1, pp. 265-275, 2025,  https://doi.org/10.1007/s11468-024-02277-6.
[6] Wang, F., et al., "Materials toward the upscaling of perovskite solar cells: progress, challenges, and strategies", Advanced Functional Materials, Vol. 28, No. 52, p. 1803753, 2018,  https://doi.org/10.1002/adfm.201803753.
[7] Domanski, K., et al., "Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells", ACS Nano, Vol. 10, No. 6, pp. 6306-6314, 2016,  https://doi.org/10.1021/acsnano.6b02613.
[8] Cai, Y., Liang, L., Gao, P., "Promise of commercialization: Carbon materials for low-cost perovskite solar cells", Chinese Physics B, Vol. 27, No. 1, p. 018805, 2018,  https://doi.org/10.1088/1674-1056/27/1/018805.
[9] Mazumdar, S., Zhao, Y., Zhang, X., "Stability of perovskite solar cells: Degradation mechanisms and remedies", Frontiers in Electronics, Vol. 2, p. 712785, 2021,  https://doi.org/10.3389/felec.2021.712785.
[10] Mohanty, I., Mangal, S., Jana, S., Singh, U. P., "Stability factors of perovskite (CH3NH3PbI3) thinfilms for solar cell applications: A study", Materials Today: Proceedings, Vol. 39, pp. 1829-1832, 2021,  https://doi.org/10.1016/j.matpr.2020.06.183.
[11] Schileo, G., Grancini, G., "Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells", Journal of Materials Chemistry C, Vol. 9, No. 1, pp. 67-76, 2021,  https://doi.org/10.1039/D0TC04552G.
[12] Jangjoy, A., Matloub, S., "Optical simulation and design of high-absorption thin-film perovskite halide solar cells based on embedded quadrilateral cluster nanoparticles", Solar Energy, Vol. 242, pp. 10-19, 2022,  https://doi.org/10.1016/j.solener.2022.07.004.
[13] Deng, K., Liu, Z., Wang, M., Li, L., "Nanoimprinted gratingembedded perovskite solar cells with improved light management", Advanced Functional Materials, Vol. 29, No. 19, p. 1900830, 2019,  https://doi.org/10.1002/adfm.201900830.
[14] Tai, M., et al., "Ultrathin Zn2SnO4 (ZTO) passivated ZnO nanocone arrays for efficient and stable perovskite solar cells", Chemical Engineering Journal, Vol. 361, pp. 60-66, 2019,  https://doi.org/10.1016/j.cej.2018.12.056.
[15] Siavash Moakhar, R., et al., "Recent advances in plasmonic perovskite solar cells", Advanced Science, Vol. 7, No. 13, p. 1902448, 2020,  https://doi.org/10.1002/advs.201902448.
[16] Krajczewski, J., Kędziora, M., Kołątaj, K., Kudelski, A., "Improved synthesis of concave cubic gold nanoparticles and their applications for Raman analysis of surfaces", RSC Advances, Vol. 9, No. 32, pp. 18609-18618, 2019,  https://doi.org/10.1039/C9RA03012C.
[17] Shao, L., Susha, A. S., Cheung, L. S., Sau, T. K., Rogach, A. L., Wang, J., "Plasmonic properties of single multispiked gold nanostars: correlating modeling with experiments", Langmuir, Vol. 28, No. 24, pp. 8979-8984, 2012,  https://doi.org/10.1021/la2048097.
[18] Hanske, C., et al., "Large-scale plasmonic pyramidal supercrystals via templated self-assembly of monodisperse gold nanospheres", The Journal of Physical Chemistry C, Vol. 121, No. 20, pp. 10899-10906, 2017,  https://doi.org/10.1021/acs.jpcc.6b12161.
[19] Wu, F., et al., "Reduced hysteresis in perovskite solar cells using metal oxide/organic hybrid hole transport layer with generated interfacial dipoles", Electrochimica Acta, Vol. 354, p. 136660, 2020,(in Persian)  https://doi.org/10.1016/j.electacta.2020.136660.
[20] Li, S., Cao, Y.-L., Li, W.-H., Bo, Z.-S., "A brief review of hole transporting materials commonly used in perovskite solar cells", Rare Metals, Vol. 40, No. 10, pp. 2712-2729, 2021,(in Persian)  https://doi.org/10.1007/s12598-020-01691-z.
[21] Roose, B., Dey, K., Chiang, Y.-H., Friend, R. H., Stranks, S. D., "Critical assessment of the use of excess lead iodide in lead halide perovskite solar cells", The Journal of Physical Chemistry Letters, Vol. 11, No. 16, pp. 6505-6512, 2020,  https://doi.org/10.1021/acs.jpclett.0c01820.
[22] Kim, T., Lim, J., Song, S., "Recent progress and challenges of electron transport layers in organic–inorganic perovskite solar cells", Energies, Vol. 13, No. 21, p. 5572, 2020,  https://doi.org/10.3390/en13215572.
[23] Latif, H., et al., "Effect of target morphology on morphological, optical and electrical properties of FTO thin film deposited by pulsed laser deposition for MAPbBr3 perovskite solar cell", Surfaces and Interfaces, Vol. 24, p. 101117, 2021,  https://doi.org/10.1016/j.surfin.2021.101117.
[24] Luo, Q., et al., "Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells", ACS Applied Materials & Interfaces, Vol. 9, No. 40, pp. 34821-34832, 2017,  https://doi.org/10.1021/acsami.7b08489.
[25] Jangjoy, A., Matloub, S., "Theoretical study of Ag and Au triple core-shell spherical plasmonic nanoparticles in ultra-thin film perovskite solar cells", Optics Express, Vol. 31, No. 12, pp. 19102-19115, 2023,  https://doi.org/10.1364/OE.491461.
[26] Fard, A. H. M., Matloub, S., "Design and simulation of bifacial perovskite solar cell with high efficiency using cubic plasmonic nanoparticles", Solar Energy, Vol. 280, p. 112871, 2024,  https://doi.org/10.1016/j.solener.2024.112871.
[27] Chen, C.-W., Hsiao, S.-Y., Chen, C.-Y., Kang, H.-W., Huang, Z.-Y., Lin, H.-W., "Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells", Journal of Materials Chemistry A, Vol. 3, No. 17, pp. 9152-9159, 2015,  https://doi.org/10.1039/C4TA05237D.
[28] Haghighat, A., Ghadimi, A., Eskandarian, A., "Novel design of multi-layer cubic nanoparticles for achieving efficient thin-film perovskite solar cells", Plasmonics, Vol. 20, No. 3, pp. 1539-1549, 2025,  https://doi.org/10.1007/s11468-024-02394-2.
[29] Jangjoy, A., Matloub, S., "Design of novel cubic nanoparticle for boosting performance of carbon-based perovskite solar cells", Solar Energy, Vol. 286, p. 113155, 2025,  https://doi.org/10.1016/j.solener.2024.113155.
[30] Lee, Y.-M., Kim, S.-E., Park, J.-E., "Strong coupling in plasmonic metal nanoparticles", Nano Convergence, Vol. 10, No. 1, p. 34, 2023,  https://doi.org/10.1186/s40580-023-00383-5.
[31] Li, Y.-F., Kou, Z.-L., Feng, J., Sun, H.-B., "Plasmon-enhanced organic and perovskite solar cells with metal nanoparticles", Nanophotonics, Vol. 9, No. 10, pp. 3111-3133, 2020,  https://doi.org/10.1515/nanoph-2020-0099.
[32] Wong, Y. L., Jia, H., Jian, A., Lei, D., El Abed, A. I., Zhang, X., "Enhancing plasmonic hot-carrier generation by strong coupling of multiple resonant modes", Nanoscale, Vol. 13, No. 5, pp. 2792-2800, 2021,  https://doi.org/10.1039/D0NR07643K.