[1] Alkhalayfeh, M. A., Aziz, A. A., Pakhuruddin, M. Z., Katubi, K. M. M., "
Recent advances of perovskite solar cells embedded with plasmonic nanoparticles", Physica Status Solidi (a), Vol. 218, No. 17, p. 2100310, 2021,
https://doi.org/10.1002/pssa.202100310.
[2] Green, M. A., Ho-Baillie, A., Snaith, H. J., "
The emergence of perovskite solar cells",
Nature Photonics, Vol. 8, No. 7, pp. 506-514, 2014,
https://doi.org/10.1038/nphoton.2014.134.
[3] Jangjoy, A., Bahador, H., Heidarzadeh, H., "
Design of an ultra-thin silicon solar cell using localized surface plasmonic effects of embedded paired nanoparticles", Optics
Communications, Vol. 450, pp. 216-221, 2019,
https://doi.org/10.1016/j.optcom.2019.06.007.
[4] Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., "
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells", Journal
of
the
American
Chemical
Society, Vol. 131, No. 17, pp. 6050-6051, 2009,
https://doi.org/10.1021/ja809598r.
[5] Jangjoy, A., Matloub, S., "
Optimizing carbon-based perovskite solar cells with pyramidal core–shell nanoparticles for high efficiency", Plasmonics, Vol. 20, No. 1, pp. 265-275, 2025,
https://doi.org/10.1007/s11468-024-02277-6.
[6] Wang, F., et al., "
Materials toward the upscaling of perovskite solar cells: progress, challenges, and strategies", Advanced Functional Materials, Vol. 28, No. 52, p. 1803753, 2018,
https://doi.org/10.1002/adfm.201803753.
[7] Domanski, K., et al., "
Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells", ACS
Nano, Vol. 10, No. 6, pp. 6306-6314, 2016,
https://doi.org/10.1021/acsnano.6b02613.
[8] Cai, Y., Liang, L., Gao, P., "
Promise of commercialization: Carbon materials for low-cost perovskite solar cells", Chinese Physics B, Vol. 27, No. 1, p. 018805, 2018,
https://doi.org/10.1088/1674-1056/27/1/018805.
[9] Mazumdar, S., Zhao, Y., Zhang, X., "
Stability of perovskite solar cells: Degradation mechanisms and remedies", Frontiers in Electronics, Vol. 2, p. 712785, 2021,
https://doi.org/10.3389/felec.2021.712785.
[10] Mohanty, I., Mangal, S., Jana, S., Singh, U. P., "
Stability factors of perovskite (CH3NH3PbI3) thinfilms for solar cell applications: A study", Materials Today: Proceedings, Vol. 39, pp. 1829-1832, 2021,
https://doi.org/10.1016/j.matpr.2020.06.183.
[11] Schileo, G., Grancini, G., "
Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells", Journal of Materials Chemistry
C, Vol. 9, No. 1, pp. 67-76, 2021,
https://doi.org/10.1039/D0TC04552G.
[12] Jangjoy, A., Matloub, S., "
Optical simulation and design of high-absorption thin-film perovskite halide solar cells based on embedded quadrilateral cluster nanoparticles", Solar Energy, Vol. 242, pp. 10-19, 2022,
https://doi.org/10.1016/j.solener.2022.07.004.
[13] Deng, K., Liu, Z., Wang, M., Li, L., "
Nanoimprinted grating‐embedded perovskite solar cells with improved light management", Advanced
Functional
Materials, Vol. 29, No. 19, p. 1900830, 2019,
https://doi.org/10.1002/adfm.201900830.
[14] Tai, M., et al., "
Ultrathin Zn2SnO4 (ZTO) passivated ZnO nanocone arrays for efficient and stable perovskite solar cells", Chemical
Engineering
Journal, Vol. 361, pp. 60-66, 2019,
https://doi.org/10.1016/j.cej.2018.12.056.
[16] Krajczewski, J., Kędziora, M., Kołątaj, K., Kudelski, A., "
Improved synthesis of concave cubic gold nanoparticles and their applications for Raman analysis of surfaces", RSC
Advances, Vol. 9, No. 32, pp. 18609-18618, 2019,
https://doi.org/10.1039/C9RA03012C.
[17] Shao, L., Susha, A. S., Cheung, L. S., Sau, T. K., Rogach, A. L., Wang, J., "
Plasmonic properties of single multispiked gold nanostars: correlating modeling with experiments", Langmuir, Vol. 28, No. 24, pp. 8979-8984, 2012,
https://doi.org/10.1021/la2048097.
[18] Hanske, C., et al., "
Large-scale plasmonic pyramidal supercrystals via templated self-assembly of monodisperse gold nanospheres", The
Journal of Physical Chemistry C, Vol. 121, No. 20, pp. 10899-10906, 2017,
https://doi.org/10.1021/acs.jpcc.6b12161.
[19] Wu, F., et al., "
Reduced hysteresis in perovskite solar cells using metal oxide/organic hybrid hole transport layer with generated interfacial dipoles", Electrochimica
Acta, Vol. 354, p. 136660, 2020,(in Persian)
https://doi.org/10.1016/j.electacta.2020.136660.
[20] Li, S., Cao, Y.-L., Li, W.-H., Bo, Z.-S., "
A brief review of hole transporting materials commonly used in perovskite solar cells", Rare
Metals, Vol. 40, No. 10, pp. 2712-2729, 2021,(in Persian)
https://doi.org/10.1007/s12598-020-01691-z.
[21] Roose, B., Dey, K., Chiang, Y.-H., Friend, R. H., Stranks, S. D., "
Critical assessment of the use of excess lead iodide in lead halide perovskite solar cells", The Journal of Physical Chemistry Letters, Vol. 11, No. 16, pp. 6505-6512, 2020,
https://doi.org/10.1021/acs.jpclett.0c01820.
[22] Kim, T., Lim, J., Song, S., "
Recent progress and challenges of electron transport layers in organic–inorganic perovskite solar cells", Energies, Vol. 13, No. 21, p. 5572, 2020,
https://doi.org/10.3390/en13215572.
[23] Latif, H., et al., "
Effect of target morphology on morphological, optical and electrical properties of FTO thin film deposited by pulsed laser deposition for MAPbBr3 perovskite solar cell", Surfaces
and
Interfaces, Vol. 24, p. 101117, 2021,
https://doi.org/10.1016/j.surfin.2021.101117.
[24] Luo, Q., et al., "
Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells", ACS
Applied
Materials
&
Interfaces, Vol. 9, No. 40, pp. 34821-34832, 2017,
https://doi.org/10.1021/acsami.7b08489.
[25] Jangjoy, A., Matloub, S., "
Theoretical study of Ag and Au triple core-shell spherical plasmonic nanoparticles in ultra-thin film perovskite solar cells", Optics
Express, Vol. 31, No. 12, pp. 19102-19115, 2023,
https://doi.org/10.1364/OE.491461.
[26] Fard, A. H. M., Matloub, S., "
Design and simulation of bifacial perovskite solar cell with high efficiency using cubic plasmonic nanoparticles", Solar
Energy, Vol. 280, p. 112871, 2024,
https://doi.org/10.1016/j.solener.2024.112871.
[27] Chen, C.-W., Hsiao, S.-Y., Chen, C.-Y., Kang, H.-W., Huang, Z.-Y., Lin, H.-W., "
Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells", Journal
of
Materials
Chemistry
A, Vol. 3, No. 17, pp. 9152-9159, 2015,
https://doi.org/10.1039/C4TA05237D.
[28] Haghighat, A., Ghadimi, A., Eskandarian, A., "
Novel design of multi-layer cubic nanoparticles for achieving efficient thin-film perovskite solar cells", Plasmonics, Vol. 20, No. 3, pp. 1539-1549, 2025,
https://doi.org/10.1007/s11468-024-02394-2.
[30] Lee, Y.-M., Kim, S.-E., Park, J.-E., "
Strong coupling in plasmonic metal nanoparticles", N
ano Convergence, Vol. 10, No. 1, p. 34, 2023,
https://doi.org/10.1186/s40580-023-00383-5.
[31] Li, Y.-F., Kou, Z.-L., Feng, J., Sun, H.-B., "
Plasmon-enhanced organic and perovskite solar cells with metal nanoparticles", Nanophotonics, Vol. 9, No. 10, pp. 3111-3133, 2020,
https://doi.org/10.1515/nanoph-2020-0099.
[32] Wong, Y. L., Jia, H., Jian, A., Lei, D., El Abed, A. I., Zhang, X., "
Enhancing plasmonic hot-carrier generation by strong coupling of multiple resonant modes", Nanoscale, Vol. 13, No. 5, pp. 2792-2800, 2021,
https://doi.org/10.1039/D0NR07643K.