[1] Sabzekar, M., Rezapour, A., Namakin, M,. "
Preicting CGS Pressure Using Machine Learning Case Study: Birjand", Energy Engineering and Management, Vol. 14, No. 3, PP. 14-27, 2024,
https://doi.org/10.22052/EEM.2025.255658.1091
[2] Ravnik, J., Jovanovac, J., Trupej, A., Vistica, N., Hribersek, M., "
A sigmoid regression and artificial neural network models for day-ahead natural gas usage forecasting", Cleaner and Responsible Consumption, Vol. 3, article 100040, 2021,
https://doi.org/10.1016/j.clrc.2021.100040
[3] Wazirali, R., Yaghoubi, E., Shadi, M., Abujazar, S., Ahmad, R., Vakili, A. H., "
State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques", Electric Power Systems Research, Vol. 225, article 109792, 2023,
https://doi.org/10.1016/j.epsr.2023.109792
[4] Han, L., Zhang, R., Wang, X., Bao, A., Jing, H., "
Multi-step wind power forecast based on VMD-LSTM", IET Renewable Power Generation, Vol. 13, No. 10, pp. 1690-1700, 2019,
https://doi.org/10.1049/iet-rpg.2018.5781
[5] Sezer, O. B., Gudelek, M. U., and Ozbayoglu, A. M., "
Financial time series forecasting with deep learning: A systematic literature review: 2005–2019", Applied Soft Computing, Vol. 90, article 106181, 2020,
https://doi.org/10.1016/j.asoc.2020.106181
[6] Xing, Z., He, Y., Wang, X., Shao, K., Duan, J., "VMD-IARIMA-Based Time-Series Forecasting Model and its Application in Dissolved Gas Analysis", IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 30, No. 2, pp. 802-811, 2022, https://doi.org/10.1109/TDEI.2022.322822
[7] Agga, A., Abbou, A., El Houm, Y., Labbadi, M., "Short-term load forecasting based on CNN and LSTM deep neural networks", IFAC-PapersOnLine, Vol. 55, No. 12, pp. 777-781, 2022, https://doi.org/10.1016/j.ifacol.2022.07.407
[8] Faiq, M., Tan, K. G., Liew, Ch. P., Hossain, F., Tso, Ch. P., Lim, L. L., Wong, A. Y. K., Shah, Z. M., "
Prediction of energy consumption in campus buildings using long short-term memory", Alexandria Engineering Journal, Vol. 67, pp. 65-76, 2023,
https://doi.org/10.1016/j.aej.2022.12.015
[9] Bacanin, N., Jovanovic, L., Zivkovic, M., Kandasamy, V., Antonijevic, M., Deveci, M., Strumberger, I., "
Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks", Information Sciences, Vol. 642, pp. 119-122, 2023,
https://doi.org/10.1016/j.ins.2023.119122
[10] Hu, H., Gong, S., Taheri, B., "
Energy demand forecasting using convolutional neural network and modified war strategy optimization algorithm", Heliyon, Vol. 10, no. 6, pp. 2-15, 2024, https://doi.org/
10.1016/j.heliyon.2024.e27353
[11] Waheed, W., Xu, Q., "
Data-driven short term load forecasting with deep neural networks: Unlocking insights for sustainable energy management", Electric Power Systems Research, Vol. 232, article 1-12, 2024,
https://doi.org/10.1016/j.epsr.2024.110376
[12] Bhambu, A., Gao, R., Suganthan, P. N., "
Recurrent ensemble random vector functional link neural network for financial time series forecasting", Applied Soft Computing, Vol. 161, article 111759, 2024,
https://doi.org/10.1016/j.asoc.2024.111759
[13] Menhaj, M. B., "Fundamentals of Neural Networks and Computational Intelligence", Amirkabir University of Technology (Tehran Polytechnic), Publication Center, 2008, ISBN:9789644630873
[14] Hochreiter, S., Schmidhuber, J., "
Long short-term memory", Neural Comput., Vol. 9, No. 8, pp. 1735-1780, 1997, https://doi.org/
10.1162/neco.1997.9.8.1735
[15] Kumar, I., Tripathi, B. K., Singh, A., "
Attention-based LSTM network-assisted time series forecasting models for petroleum production", Engineering Applications of Artificial Intelligence, Vol. 123, article 106440, 2023,
https://doi.org/10.1016/j.engappai.2023.106440
[16] Ehteram, M., Nia, M. A., Panahi, F., Farrokhi, A., "
Read-First LSTM model: A new variant of long short term memory neural network for predicting solar radiation data", Energy Conversion and Management, Vol. 305, article 118267, 2024,
https://doi.org/10.1016/j.enconman.2024.118267
[17] Haghighi Naeini, K., Khanjani, M., and Rastgar Sorkheh, M. A., "
A Hybrid LSTM-VMD Model for Predicting Stock Prices in the Tehran Stock Exchange", The 1st International Conference on Management Capabilities in Industrial Engineering, Accounting, and Economics, Rah Danesh Higher Education Institute, Babol, Iran, 2023, Exclusive Code: 01211-81035,
https://civilica.com/doc/1690707/
[18] K. Dragomiretskiy, Zosso, D., "
Variational mode decomposition", IEEE Transactions on Signal Processing, Vol. 62, No. 3, pp. 531-544, 2013, https://doi.org/
10.1109/TSP.2013.2288675
[20] Ghayas, M., "
An Introduction to the Monte Carlo Simulation Method", Iran Polymer and Petrochemical Institute, Vol. 4, No. 1, pp. 67-77, 2014,
https://civilica.com/doc/601265
[21] Heydari, R., Haj Seyed Javadi, S. M. R., "
Application of a Hybrid Data Mining Model (Genetic Algorithm-Wavelet-Monte Carlo Simulation) for Predicting Agricultural Product Prices: A Case Study of Future Saffron Prices in the Agricultural Commodity Exchange", Vol. 30, No. 4, pp. 73-105, 2022, https://doi.org/
10.30490/AEAD.2023.357440.1412
[22] Yadav, H., Thakkar, A., "
NOA-LSTM: An efficient LSTM cell architecture for time series forecasting", Expert Systems with Applications, Vol. 238, article 1-10, 2024,
https://doi.org/10.1016/j.eswa.2023.122333
[23] Mohammadi, M., Jamshidi, S., Rezvanian, A., Gheisari, M., Kumar, A., "
Advanced fusion of MTM-LSTM and MLP models for time series forecasting: An application for forecasting the solar radiation", Measurement: Sensors, Vol. 33, pp. 1-11, 2024,
https://doi.org/10.1016/j.measen.2024.101179
[24] Chen, K., Guo, S., Lin, Y., Ying, Z., "
Least absolute relative error estimation", Journal of the American Statistical Association, Vol. 105, No. 491, pp. 1104-1112, 2010,
https://doi.org/10.1198/jasa.2010.tm09307