ارزیابی فنی-اقتصادی کاربرد چرخ دسیکنت در سیستم‌های تهویۀ مطبوع مراکز درمانی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه اراک، اراک، ایران

چکیده

در این پژوهش، مدل‌سازی عددی برای ارزیابی فنی و اقتصادی کاربرد چرخ دسیکنت در سیستم‌های تهویۀ مطبوع مراکز درمانی به کار رفته است. هدف اصلی، تحلیل میزان صرفه‌جویی در مصرف انرژی و کاهش هزینه‌های بهره‌برداری ازطریق استفاده از این فناوری در هواسازهاست. پارامترهایی مانند ظرفیت نامی هواساز، شرایط آب‌وهوایی اقلیم‌های مختلف و مدت‌زمان بهره‌برداری سالانه، به‌عنوان متغیرهای کلیدی در شبیه‌سازی بررسی شده‌اند. مطالعات ابتدا در چند درمانگاه منتخب استان مرکزی انجام شد و سپس به سطح ملی گسترش یافت. نتایج نشان می‌دهد که به‌کارگیری سیستم دسیکنت در هواسازها، سبب صرفه‌جویی قابل توجهی در مصرف برق می‌شود. این صرفه‌جویی تا حدی است که می‌تواند جایگزین ظرفیت تولید چندین نیروگاه کوچک گردد. هرچند مصرف گاز طبیعی برای احیای چرخ دسیکنت افزایش پیدا می‌کند، اما مجموع صرفه‌جویی برق و مزایای زیست‌محیطی ناشی از کاهش انتشار آلاینده‌ها، به‌طور کامل بر هزینه‌های اضافی غالب است. دورۀ بازگشت سرمایه، با توجه به سناریوهای مختلف قیمت گاز و تجهیزات، کمتر از ۱۲ سال برآورد می‌شود. علاوه‌بر این، استفاده از منابع حرارتی با کیفیت پایین مانند انرژی خورشیدی برای احیای چرخ‌ها، مزیتی رقابتی برای این فناوری به شمار می‌رود. درمجموع، کاربرد چرخ دسیکنت رویکردی مؤثر و پایدار برای بهینه‌سازی مصرف انرژی در مراکز درمانی است.

کلیدواژه‌ها

موضوعات


[1] Mastrucci, A., Boza-Kiss, B., van Ruijven, B. "Towards net-zero emissions in global residential heating and cooling: a global scenario analysis", Climatic Change, Vol. 178, No. 4, pp. 1–22, April  2025, https://doi.org/10.1007/s10584-025-03923-6.
[2] Delgado, A., Keene, K., Wang, N. "Integrating health and energy efficiency in healthcare facilities", Pacific Northwest National Lab. (PNNL), Richland, WA (United States), March  2021.
[3] Hendron, R., Leach, M., Bonnema, E., Shekhar, D., Pless, S. "Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities", National Renewable Energy Laboratory (NREL), Golden, CO (United States), Sep. 2013.
[4] Pesaran, A. A., Penney, T. R., Czanderna, A. W. "Desiccant cooling: state-of-the-art assessment", National Renewable Energy Laboratory (NREL), Golden, CO (United States), Oct.  1992.
[5] O’Connor, D., Calautti, J. K., Hughes, B. R. "A novel design of a desiccant rotary wheel for passive ventilation applications", Applied Energy, Vol. 179, pp. 99–112, Oct. 2016, https://doi.org/10.1016/j.apenergy.2016.06.029.
[6] Fischer, J. "Desiccant-based preconditioning market analysis", Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), Jan. 2001.
[7] Casas, W., Schmitz, G. "Experiences with a gas driven, desiccant assisted air conditioning system with geothermal energy for an office building", Energy and Buildings, Vol. 37, No. 5, pp. 493–501, May 2005, https://doi.org/10.1016/j.enbuild.2004.09.011.
[8] Henning, H. M., Pagano, T., Mola, S., Wiemken, E. "Micro trigeneration system for indoor air conditioning in the Mediterranean climate", Applied Thermal Engineering, Vol. 27, No. 13, pp. 2188–2194, Sep.  2007, https://doi.org/10.1016/j.applthermaleng.2005.07.031.
[9] Mazzei, P., Minichiello, F., Palma, D. "Desiccant HVAC systems for commercial buildings", Applied Thermal Engineering, Vol. 22, No. 5, pp. 545–560, April  2002, https://doi.org/10.1016/S1359-4311(01)00096-5.
[10] Liu, W., Lian, Z., Radermacher, R., Yao, Y. "Energy consumption analysis on a dedicated outdoor air system with rotary desiccant wheel", Energy, Vol. 32, No. 9, pp. 1749–1760, Sep.  2007, https://doi.org/10.1016/j.energy.2006.11.012.
[11] Bharathan, D., Parsons, J. M., Maclaine Cross, I. L. "Experimental studies of heat and mass exchange in parallel passage rotary desiccant dehumidifiers for solar cooling applications", Solar Energy Research Institute, Golden, CO (USA), Nov.  1987.
[12] Shastry, D. V., Jagadish, B. S., Sharma, G. K. "Performance studies on adsorbents for desiccant cooling", Proceedings of the 7th Miami International Conference on Alternative Energy Sources, Miami, FL (USA), Solar Energy, Vol. 2. pp. 51–60, Dec. 1985.
[13] Zheng, W., Worek, W. M. "Numerical simulation of combined heat and mass transfer processes in a rotary dehumidifier", Numerical Heat Transfer, Part A: Applications, Vol. 23, No. 2, pp. 211–232, March 1993, https://doi.org/10.1080/10407789308913669.
[14] Zheng, W., Worek, W. M., Novosel, D. "Performance optimization of rotary dehumidifiers", Journal of Solar Energy Engineering (ASME), Vol. 117, No. 1, pp. 40–44, Feb. 1995, https://doi.org/10.1115/1.2847724.
[15] Charoensupaya, D., Worek, W. M. "Parametric study of an open cycle adiabatic, solid, desiccant cooling system", Energy, Vol. 13, No. 9, pp. 739–747, Sep. 1988, https://doi.org/10.1016/0360-5442(88)90106-5.
[16] Charoensupaya, D., Worek, W. M. "Effect of adsorbent heat and mass transfer resistances on performance of an open cycle adiabatic desiccant cooling system", Heat Recovery Systems & CHP, Vol. 8, No. 6, pp. 537–548, Jan. 1988, https://doi.org/10.1016/0890-4332(88)90013-0.
[17] Majumdar, P., Worek, W. M. "Combined heat and mass transfer in a porous adsorbent", Energy, Vol. 14, No. 3, pp. 161–175, March 1989, https://doi.org/10.1016/0360-5442(89)90059-5.
[18] San, J. Y. "Heat and mass transfer in a two-dimensional cross-flow regenerator with a solid conduction effect", International Journal of Heat and Mass Transfer, Vol. 36, No. 3, pp. 633–643, Feb. 1993, https://doi.org/10.1016/0017-9310(93)80039-W.
[19] San, J.  Y., Hsiau, S. C. "Effect of axial solid heat conduction and mass diffusion in a rotary heat and mass regenerator", International Journal of Heat and Mass Transfer, Vol. 36, No. 8, pp. 2051–2059, Jan. 1993, https://doi.org/10.1016/S0017-9310(05)80136-X.
[20] Konard, G., Eigenberger, G. "Heat and mass regenerators in rotor adsorber", Chemical Engineering and Technology, Vol. 66, No. 3, pp. 321–331, March 1994, https://doi.org/10.1002/cite.330660305.
[21] Niu, J. L., Zhang, L. Z. "Effects of wall thickness on the heat and moisture transfers in desiccant wheels for air dehumidification and enthalpy recovery", International Communications in Heat and Mass Transfer, Vol. 29, No. 2, pp. 255–268, Feb. 2002, https://doi.org/10.1016/S0735-1933(02)00316-0.
[22] Gao, Z., Mei, V. C., Tomlinson, J. J. "Theoretical analysis of dehumidification process in a desiccant wheel", Heat and Mass Transfer, Vol. 41, No. 11, pp. 1033–1042, Sep. 2005, https://doi.org/10.1007/s00231-005-0663-4.
[23] Camargo, J. R., Godoy, E. Jr., Ebinuma, C. D. "An evaporative and desiccant cooling system for air conditioning in humid climates", Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 27, pp. 243–247, 2005, https://doi.org/10.1590/S1678-58782005000300005.
[24] De Antonellis, S., Intini, M., Joppolo, C. M. "Desiccant wheels effectiveness parameters: Correlations based on experimental data", Energy and Buildings, Vol. 103, pp. 296–306, Sep. 2015, https://doi.org/10.1016/j.enbuild.2015.06.041.
[25] Kumar, C., Arya, R. "Experimental investigations on solid desiccant cooling system", International Journal of Trend in Scientific Research and Development, Vol. 4, No. 6, pp. 1838–1841, Oct. 2020, https://www.ijtsrd.com/papers/ijtsrd35821.pdf.
[26] Tsai, H. Y., Wu, C. T. "Optimization of a rotary desiccant wheel for enthalpy recovery of air-conditioning in a humid hospitality environment", Heliyon, Vol. 8, No. 10, e10796, Oct. 2022, https://doi.org/10.1016/j.heliyon.2022.e10796.
[27] Kodama, A., Goto, M., Hirose, T., Kuma, T., "Performance evaluation for a thermal swing honeycomb rotor adsorber using a humidity chart", Journal of chemical engineering of Japan, Vol. 28, No. 1, pp. 19–24, 1995, https://doi.org/10.1252/jcej.28.19.
[28] Pahlavanzadeh, H., Zamzamian, A. H., Omidkhahnasrin, M. R., "Analysis of effective parameters on a rotary desiccant wheel performance", Sharif Journal of Mechanical Engineering, Vol. 23, No. 40.2, pp. 155–162, Feb. 20, 2008, (In Persian), https://sjme.journals.sharif.edu/article_5669_en.html?lang=fa.