ارائۀ ساختاری برای قیمت‌دهی توان راکتیو منابع انرژی پراکنده مبتنی‌بر اینورتر سه‌فاز به‌منظور مشارکت در بازار

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه برق، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

با رشد نفوذ منابع انرژی پراکنده (DERs) در شبکه‌های توزیع، بهره‌برداری مؤثر از این منابع در ارائۀ خدمات جانبی، مستلزم در نظر گرفتن ملاحظات فنی و اقتصادی است. به این منظور، در این مقاله ساختاری نوین برای قیمت‌دهی تولید توان راکتیو توسط منابع انرژی پراکنده مبتنی‌بر اینورتر سه‌فاز (TIDERs) به‌منظور مشارکت در بازار توان راکتیو ارائه شده است. در این ساختار، هزینه‌های تحمیل‌شده به منابع برای تولید توان راکتیو نامتعادل لحاظ شده است تا انگیزۀ لازم برای مشارکت منابع جهت شرکت در تأمین این خدمت جانبی به‌منظور کاهش نامتعادلی در سیستم فراهم گردد. تابع پرداخت پیشنهادی که بیانگر مبالغ پرداختی به منابع برای تولید توان راکتیو متعادل و نامتعادل است، به‌عنوان تابع هدف بازار در نظر گرفته شده است. همچنین به‌منظور بازتاب دقیق‌تر اثر این خدمت جانبی، محدودیت‌های نامتعادلی ولتاژ نیز در فرایند تسویه بازار در نظر گرفته شده‌اند. نتایج شبیه‌سازی‌ها نشان می‌دهد که با اعمال ساختار قیمت‌دهی پیشنهادی، انگیزۀ مشارکت TIDERs افزایش یافته، میزان نامتعادلی ولتاژ کاهش پیدا کرده و درنهایت، با حفظ رقابت‌پذیری بازار، کمترین هزینۀ ممکن به سیستم تحمیل شده است.

کلیدواژه‌ها


[1] Zhong, J., Bhattacharya, K., "Toward a competitive market for reactive power", IEEE Transactions on Power Systems, Vol. 17, No. 4, pp. 1206-1215, 2002. https://doi.org/10.1109/TPWRS.2002.805025.
[2] Zhong, J., Nobile, E., Bose, A., Bhattacharya, K., "Localized reactive power markets using the concept of voltage control areas", IEEE Transactions on power systems, Vol. 19, No. 3, pp. 1555-1561, 2004. https://doi.org/10.1109/TPWRS.2004.831656.
[3] Zhong, J., Bhattacharya, K., "Reactive power management in deregulated electricity markets-A review", in 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 02CH37309), Vol. 2, pp. 1287-1292, 2002. https://doi.org/10.1109/PESW.2002.985223.
[4] Ma, K., Fang, L., Kong, W., "Review of distribution network phase unbalance: Scale, causes, consequences, solutions, and future research directions", CSEE Journal of Power and Energy systems, Vol. 6, No. 3, pp. 479-488, 2020. https://doi.org/10.17775/CSEEJPES.2019.03280.
[5] Vassallo, M., et al., "Phase Reconfiguration for Power Distribution Networks with High DERs Penetration", 2025. https://orbi.uliege.be/handle/2268/327465.
[6] Potter, A., Haider, R., Ferro, G., Robba, M., Annaswamy, A., "A reactive power market for the future grid", Advances in Applied Energy, Vol. 9, p. 100114, 2023. https://doi.org/10.1016/j.adapen.2022.100114.
[7] Oureilidis, K., et al., "Ancillary services market design in distribution networks: Review and identification of barriers", Energies, Vol. 13, No. 4, p. 917, 2020. https://doi.org/10.3390/en13040917.
[8] Caldon, R., Coppo, M., Turri, R., "Voltage unbalance compensation in LV networks with inverter interfaced distributed energy resources", in 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), pp. 527-532, 2012. https://doi.org/10.1109/EnergyCon.2012.6348210.
[9] Coppo, M., Raciti, A., Caldon, R., Turri, R., "Exploiting inverter-interfaced DG for Voltage unbalance mitigation and ancillary services in distribution systems", in 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), pp. 371-376, 2015. https://doi.org/10.1109/RTSI.2015.7325126.
[10] Alathamneh, M., Ghanayem, H., Yang, X., Nelms, R., "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Proportional-Resonant Control Method", Energies, Vol. 15, No. 19, p. 7051, 2022. https://doi.org/10.1109/IECON48115.2021.9589120.
[11] Barrero-González, F., et al., "Photovoltaic Power Converter Management in Unbalanced Low Voltage Networks with Ancillary Services Support", Energies, Vol. 12, No. 6, p. 972, 2019. https://doi.org/10.3390/en12060972.
[12] Lu, J., Nejabatkhah, F., Li, Y., Wu, B., "DG control strategies for grid voltage unbalance compensation", in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2932-2939, 2014. https://doi.org/10.1109/ECCE.2014.6953797.
[13] Czarnecki, L., "Energy Flow and Power Phenomena in Electrical Circuits: Illusions and Reality", Electrical Engineering (Archiv fur Elektrotechnik), Vol. 82, pp. 119-126, 2000. https://doi.org/10.1007/s002020050002.
[14] Moradi, A., Yaghoobi, J., Zare, F., Kumar, D., "Impact of Unbalanced-load Condition on 0-9 kHz Current Harmonics in a Three-phase Power Converter", IEEE Access, 2021. https://doi.org/10.1109/ACCESS.2021.3131304.
[15] Farahani, H. F., Shayanfar, H., Ghazizadeh, M., "Modeling of stochastic behavior of plug-in hybrid electric vehicle in a reactive power market", Electrical Engineering, Vol. 96, pp. 1-13, 2014. https://doi.org/10.1007/s00202-012-0272-4.
[16] Jafari Siahroodi, H., Mojallali, H., Mohtavipour, S. S., "A new stochastic multi-objective framework for the reactive power market considering plug-in electric vehicles using a novel metaheuristic approach", Neural Computing and Applications, Vol. 34, No. 14, pp. 11937-11975, 2022. https://doi.org/10.1007/s00521-022-07081-z.
[17] Stekli, J., Bai, L., Cali, U., Halden, U., Dynge, M. F., "Distributed energy resource participation in electricity markets: A review of approaches, modeling, and enabling information and communication technologies", Energy Strategy Reviews, Vol. 43, p. 100940, 2022. https://doi.org/10.1016/j.esr.2022.100940.
[18] Miveh, M. R., Rahmat, M. F., Ghadimi, A. A., Mustafa, M. W., "Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review", Renewable and Sustainable Energy Reviews, Vol. 54, pp. 1592-1610, 2016. https://doi.org/10.1016/j.rser.2015.10.079.
[19] Li, Y., Nejabatkhah, F., "Overview of control, integration and energy management of microgrids", Journal of Modern Power Systems and Clean Energy, Vol. 2, No. 3, pp. 212-222, 2014. https://doi.org/10.1007/s40565-014-0063-1.
[20] Afkar, H., Esmaeeli, M., "Complete Load Compensation in a Distribution Network with a Single-Stage PV Grid Interface Converter", Energy Engineering and Management, Vol. 12, No. 4, pp. 18-29, 2023. https://doi.org/10.22052/10.2.10.
[21] Willems, J. L., "The IEEE standard 1459: What and why?", in 2010 IEEE International Workshop on Applied Measurements for Power Systems, pp. 41-46, 2010. https://doi.org/10.1109/AMPS.2010.5609324.
[22] Blasco, P. A., Montoya-Mira, R., Diez, J. M., Montoya, R., "An alternate representation of the vector of apparent power and unbalanced power in three-phase electrical systems", Applied Sciences, Vol. 10, No. 11, p. 3756, 2020. https://doi.org/10.3390/app10113756.
[23] León-Martínez, V., Montañana-Romeu, J., Peñalvo-López, E., Valencia-Salazar, I., "Relationship between Buchholz’s Apparent Power and Instantaneous Power in Three-Phase Systems", Applied Sciences, Vol. 10, No. 5, p. 1798, 2020. https://doi.org/10.3390/app10051798.
[24] Ullah, N. R., Bhattacharya, K., Thiringer, T., "Wind farms as reactive power ancillary service providers—technical and economic issues", IEEE Transactions on Energy Conversion, Vol. 24, No. 3, pp. 661-672, 2009. https://doi.org/10.1109/TEC.2008.2008957.
[25] Gandhi, O., Rodríguez-Gallegos, C. D., Zhang, W., Srinivasan, D., Reindl, T., "Economic and technical analysis of reactive power provision from distributed energy resources in microgrids", Applied energy, Vol.210, pp. 827-841, 2018. https://doi.org/10.1016/j.apenergy.2017.08.154.
[26] Amjady, N., Rabiee, A., Shayanfar, H., "Pay-as-bid based reactive power market", Energy Conversion and Management, Vol. 51, No. 2, pp. 376-381, 2010. https://doi.org/10.1016/j.enconman.2009.10.012.
[27] Zubiaga, M., Sanchez-Ruiz, A., Olea, E., Unamuno, E., Bilbao, A., Arza, J., "Power Capability Boundaries for an Inverter Providing Multiple Grid Support Services", Energies, Vol. 13, No. 17, p. 4314, 2020. https://doi.org/10.3390/en13174314.
[28] Singhal, A., Bharati, A., Ajjarapu, V., "Deriving DERs VAR-Capability Curve at TSO-DSO Interface to Provide Grid Services", IEEE Transactions on Power Systems, Vol. PP, pp. 1-14, 01/01 2022. https://doi.org/10.1109/TPWRS.2022.3200024.
[29] Ayikpa, M. E., "Unbalanced distribution optimal power flow to minimize losses with distributed photovoltaic plants", Int. J. Electr. Comput. Energ. Electron. Commun. Eng, Vol. 11, pp. 181-186, 2017. https://doi.org/10.5281/zenodo.1129161.
[30] Sereeter, B., Vuik, K., Witteveen, C., "Newton Power Flow Methods for Unbalanced Three-Phase Distribution Networks", Energies, Vol. 10, No. 10, p. 1658, 2017. https://doi.org/10.3390/en10101658.
[31] Siahkali, H., "Power quality indexes for continue and discrete disturbances in a distribution area", in 2008 IEEE 2nd International Power and Energy Conference, pp. 678-683, 2008. https://doi.org/10.1109/PECON.2008.4762561.
[32] Karagiannopoulos, S., Aristidou, P., Hug, G., "A centralised control method for tackling unbalances in active distribution grids", in 2018 Power Systems Computation Conference (PSCC), pp. 1-7, 2018. https://doi.org/10.23919/PSCC.2018.8442493.
[33] IEEE PES Test Feeder, [Online]. Available: https://cmte.ieee.org/pes-testfeeders/resources.