[1] Zhong, J., Bhattacharya, K., "Toward a competitive market for reactive power", IEEE Transactions on Power Systems, Vol. 17, No. 4, pp. 1206-1215, 2002. https://doi.org/10.1109/TPWRS.2002.805025.
[2] Zhong, J., Nobile, E., Bose, A., Bhattacharya, K., "Localized reactive power markets using the concept of voltage control areas", IEEE Transactions on power systems, Vol. 19, No. 3, pp. 1555-1561, 2004. https://doi.org/10.1109/TPWRS.2004.831656.
[3] Zhong, J., Bhattacharya, K., "Reactive power management in deregulated electricity markets-A review", in 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 02CH37309), Vol. 2, pp. 1287-1292, 2002. https://doi.org/10.1109/PESW.2002.985223.
[4] Ma, K., Fang, L., Kong, W., "Review of distribution network phase unbalance: Scale, causes, consequences, solutions, and future research directions", CSEE Journal of Power and Energy systems, Vol. 6, No. 3, pp. 479-488, 2020. https://doi.org/10.17775/CSEEJPES.2019.03280.
[5] Vassallo, M., et al., "Phase Reconfiguration for Power Distribution Networks with High DERs Penetration", 2025. https://orbi.uliege.be/handle/2268/327465.
[6] Potter, A., Haider, R., Ferro, G., Robba, M., Annaswamy, A., "A reactive power market for the future grid", Advances in Applied Energy, Vol. 9, p. 100114, 2023. https://doi.org/10.1016/j.adapen.2022.100114.
[7] Oureilidis, K., et al., "Ancillary services market design in distribution networks: Review and identification of barriers", Energies, Vol. 13, No. 4, p. 917, 2020. https://doi.org/10.3390/en13040917.
[8] Caldon, R., Coppo, M., Turri, R., "Voltage unbalance compensation in LV networks with inverter interfaced distributed energy resources", in 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), pp. 527-532, 2012. https://doi.org/10.1109/EnergyCon.2012.6348210.
[9] Coppo, M., Raciti, A., Caldon, R., Turri, R., "Exploiting inverter-interfaced DG for Voltage unbalance mitigation and ancillary services in distribution systems", in 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), pp. 371-376, 2015. https://doi.org/10.1109/RTSI.2015.7325126.
[10] Alathamneh, M., Ghanayem, H., Yang, X., Nelms, R., "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Proportional-Resonant Control Method", Energies, Vol. 15, No. 19, p. 7051, 2022. https://doi.org/10.1109/IECON48115.2021.9589120.
[11] Barrero-González, F., et al., "Photovoltaic Power Converter Management in Unbalanced Low Voltage Networks with Ancillary Services Support", Energies, Vol. 12, No. 6, p. 972, 2019. https://doi.org/10.3390/en12060972.
[12] Lu, J., Nejabatkhah, F., Li, Y., Wu, B., "DG control strategies for grid voltage unbalance compensation", in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2932-2939, 2014. https://doi.org/10.1109/ECCE.2014.6953797.
[13] Czarnecki, L., "Energy Flow and Power Phenomena in Electrical Circuits: Illusions and Reality", Electrical Engineering (Archiv fur Elektrotechnik), Vol. 82, pp. 119-126, 2000. https://doi.org/10.1007/s002020050002.
[14] Moradi, A., Yaghoobi, J., Zare, F., Kumar, D., "Impact of Unbalanced-load Condition on 0-9 kHz Current Harmonics in a Three-phase Power Converter", IEEE Access, 2021. https://doi.org/10.1109/ACCESS.2021.3131304.
[15] Farahani, H. F., Shayanfar, H., Ghazizadeh, M., "Modeling of stochastic behavior of plug-in hybrid electric vehicle in a reactive power market", Electrical Engineering, Vol. 96, pp. 1-13, 2014. https://doi.org/10.1007/s00202-012-0272-4.
[16] Jafari Siahroodi, H., Mojallali, H., Mohtavipour, S. S., "A new stochastic multi-objective framework for the reactive power market considering plug-in electric vehicles using a novel metaheuristic approach", Neural Computing and Applications, Vol. 34, No. 14, pp. 11937-11975, 2022. https://doi.org/10.1007/s00521-022-07081-z.
[17] Stekli, J., Bai, L., Cali, U., Halden, U., Dynge, M. F., "Distributed energy resource participation in electricity markets: A review of approaches, modeling, and enabling information and communication technologies", Energy Strategy Reviews, Vol. 43, p. 100940, 2022. https://doi.org/10.1016/j.esr.2022.100940.
[18] Miveh, M. R., Rahmat, M. F., Ghadimi, A. A., Mustafa, M. W., "Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review", Renewable and Sustainable Energy Reviews, Vol. 54, pp. 1592-1610, 2016. https://doi.org/10.1016/j.rser.2015.10.079.
[19] Li, Y., Nejabatkhah, F., "Overview of control, integration and energy management of microgrids", Journal of Modern Power Systems and Clean Energy, Vol. 2, No. 3, pp. 212-222, 2014. https://doi.org/10.1007/s40565-014-0063-1.
[20] Afkar, H., Esmaeeli, M., "Complete Load Compensation in a Distribution Network with a Single-Stage PV Grid Interface Converter", Energy Engineering and Management, Vol. 12, No. 4, pp. 18-29, 2023. https://doi.org/10.22052/10.2.10.
[21] Willems, J. L., "The IEEE standard 1459: What and why?", in 2010 IEEE International Workshop on Applied Measurements for Power Systems, pp. 41-46, 2010. https://doi.org/10.1109/AMPS.2010.5609324.
[22] Blasco, P. A., Montoya-Mira, R., Diez, J. M., Montoya, R., "An alternate representation of the vector of apparent power and unbalanced power in three-phase electrical systems", Applied Sciences, Vol. 10, No. 11, p. 3756, 2020. https://doi.org/10.3390/app10113756.
[23] León-Martínez, V., Montañana-Romeu, J., Peñalvo-López, E., Valencia-Salazar, I., "Relationship between Buchholz’s Apparent Power and Instantaneous Power in Three-Phase Systems", Applied Sciences, Vol. 10, No. 5, p. 1798, 2020. https://doi.org/10.3390/app10051798.
[24] Ullah, N. R., Bhattacharya, K., Thiringer, T., "Wind farms as reactive power ancillary service providers—technical and economic issues", IEEE Transactions on Energy Conversion, Vol. 24, No. 3, pp. 661-672, 2009. https://doi.org/10.1109/TEC.2008.2008957.
[25] Gandhi, O., Rodríguez-Gallegos, C. D., Zhang, W., Srinivasan, D., Reindl, T., "Economic and technical analysis of reactive power provision from distributed energy resources in microgrids", Applied energy, Vol.210, pp. 827-841, 2018. https://doi.org/10.1016/j.apenergy.2017.08.154.
[26] Amjady, N., Rabiee, A., Shayanfar, H., "Pay-as-bid based reactive power market", Energy Conversion and Management, Vol. 51, No. 2, pp. 376-381, 2010. https://doi.org/10.1016/j.enconman.2009.10.012.
[27] Zubiaga, M., Sanchez-Ruiz, A., Olea, E., Unamuno, E., Bilbao, A., Arza, J., "Power Capability Boundaries for an Inverter Providing Multiple Grid Support Services", Energies, Vol. 13, No. 17, p. 4314, 2020. https://doi.org/10.3390/en13174314.
[28] Singhal, A., Bharati, A., Ajjarapu, V., "Deriving DERs VAR-Capability Curve at TSO-DSO Interface to Provide Grid Services", IEEE Transactions on Power Systems, Vol. PP, pp. 1-14, 01/01 2022. https://doi.org/10.1109/TPWRS.2022.3200024.
[29] Ayikpa, M. E., "Unbalanced distribution optimal power flow to minimize losses with distributed photovoltaic plants", Int. J. Electr. Comput. Energ. Electron. Commun. Eng, Vol. 11, pp. 181-186, 2017. https://doi.org/10.5281/zenodo.1129161.
[30] Sereeter, B., Vuik, K., Witteveen, C., "Newton Power Flow Methods for Unbalanced Three-Phase Distribution Networks", Energies, Vol. 10, No. 10, p. 1658, 2017. https://doi.org/10.3390/en10101658.
[31] Siahkali, H., "Power quality indexes for continue and discrete disturbances in a distribution area", in 2008 IEEE 2nd International Power and Energy Conference, pp. 678-683, 2008. https://doi.org/10.1109/PECON.2008.4762561.
[32] Karagiannopoulos, S., Aristidou, P., Hug, G., "A centralised control method for tackling unbalances in active distribution grids", in 2018 Power Systems Computation Conference (PSCC), pp. 1-7, 2018. https://doi.org/10.23919/PSCC.2018.8442493.
[33] IEEE PES Test Feeder, [Online]. Available: https://cmte.ieee.org/pes-testfeeders/resources.