کاربرد مدار اسنابر بدون تلفات برای مبدل افزایندۀ فلای‌بک-فوروارد همراه با بازیابی انرژی سلف نشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فنی مهندسی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان ، ایران

2 دانشکده فنی مهندسی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران

3 دانشکده مهندسی برق، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران

چکیده

در این مقاله یک مبدل افزایندۀ فلای‌بک-فوروارد درهم‌تنیده با یک مدار کمکی جدید ارائه شده است. مدار کمکی با تعداد المان پایین، شرایط کلیدزنی در ولتاژ صفر را برای روشن شدن و خاموش شدن سوئیچ‌ها فراهم می‌کند و ازطرفی انرژی سلف نشتی ترانسفورمر نیز به‌نحو مناسبی جذب مدار کمکی شده و از جهش‌های ولتاژ دو سر سوئیچ جلوگیری می‌شود. ازطرفی سیم‌پیچ سوم در مدار کمکی نه‌تنها انرژی مدار کمکی را به خروجی انتقال می‌دهد، بلکه در فرایند رزونانس موجب تخلیۀ کامل خازن‌های اسنابر سوئیچ‌های اصلی مبدل می‌گردد. این مدار کمکی قابل گسترش بوده و با اضافه شدن شاخه‌های مبدل تعداد سوئیچ کمکی افزایش نمی‌یابد. عملکرد مبدل پیشنهادی به‌طور کامل تحلیل شده و برای نشان دادن درستی عملکرد آن، یک نمونۀ آزمایشگاهی 120 وات پیاده‌سازی شده است. نتایج بیانگر 5/6 درصد افزایش راندمان نسبت به مبدل بدون مدار کمکی است.

کلیدواژه‌ها

موضوعات


[1] Baharizadeh, M., Karshenas, H.R., Guerrero, J. M., "An improved power control strategy for hybrid AC-DC microgrids", International Journal of Electrical Power and Energy Systems, Vol. 95, pp. 364-373, Feb. 2018, https://doi.org/10.1016/j.ijepes.2017.08.036.
[2] Shojaeian, H., Hasanzadeh, S.,  Salehi, S.M., "A single switch high voltage gain dc-dc converter based on coupled inductor and switched-capacitor for renewable energy systems", Proceeding of the IEEE/PEDSTC, pp. 1-6, Tabriz, Iran, 2021, https://doi.org/10.1109/PEDSTC52‌094.2021.9405931.
[3] Sedaghati F., "A bidirectional dc-dc converter with zero voltage switching capability for energy storage application". Energy Engineering and Managementis, Vol. 9, No. 2, pp. 48-63, 2019, https://doi.org/10.22052/9.2.48.
[4] Hema Rani, P., Navasree, S., George, S., Ashok, S., "Fuzzy logic supervisory controller for multi-input non-isolated DC to DC converter connected to DC grid", International Journal of Electrical Power and Energy Systems, Vol. 112, pp. 49-60, 2019, https://doi.org/10.1016/j.ijep‌es.20‌19.0‌4.0‌18.
[5] Lee, S.W., Do, H.L., "Soft-switching two-switch resonant ac–dc converter with high power factor", IEEE Trans. on Industrial Electronics, Vol. 63, No. 4, pp. 2083-2091, 2016, https://doi.org/10.1109/TIE.2015.2505675.
[6] Eshaghpour, I., Delshad, M., Javadi, S., "A new soft switching high step-up converter ability to increase parallel branches without the need for a new auxiliary circuit", Journal of Intelligent Procedures in Electrical Technology, Vol. 14, No. 55, pp. 43-54, 2023, https://dorl.net/dor/20.1001.1.23223871.1402.14.55.4.2.
[7] Haghshenas, G., Mirtalaei, S.M.M., Mordmand, M., Shahgholian, G., "High step-up boost-flyback converter with soft switching for photovoltaic applications", Journal of Circuits, Systems, and Computers, Vol. 28, No. 1, pp. 1-16, 2019, https://doi.org/10.1142/S0218126619500142.
[8] Shojaeian, H., Hasanzadeh, S., Heydari, M., "High efficient and high step-up dual switches converter based on three coupled inductors", International Journal of Industrial Electronics Control and Optimization, Vol. 1, No. 2, pp. 143-152, 2018, https://dorl.net/dor/20.1001‌.1.264‌53517.2018.1.2.8.5.
[9] Revathi, B.S., Mahalingam, P., Gonzalez-Longatt, F., "Interleaved high gain dc-dc converter for integrating solar PV source to DC bus", Solar Energy, Vol. 188, pp. 924-934, 2019, https://doi.org/10.1016/j.solen‌er.2019.0‌6.‌072.
[10] Goncalves, P., Agostini, J.E., "Generalized analysis of the high-voltage-gain interleaved ZVS boost-flyback converter", IET Power Electronics, Vol. 13, No. 11, pp. 2361-2371, 2020, https://doi.org/10.1049/iet-pel.2019.1‌373
[11] Fani, B., Delshad, M., Nazarpour, D., "A new hard switching bidirectional converter with high power density", Journal of Intelligent Procedures in Electrical Technology, Vol. 1, No. 1, pp 51-56, 2010, https://dorl.net/do‌r/20.1‌001.1.232‌23871.1389.1.1.6.5
[12] Elserougi, A., Abdelsalam, I., Massoud, A., Ahmed, S., "A bidirectional non-isolated hybrid modular DC–DC converter with zero-voltage switching", Electric Power Systems Research, Vol. 167, pp. 277-289, 2019, https://doi.org/10.1016/j.epsr.2018.11.009 
[13] Dananjayan, P., Shram, V., Chellamuthu, C., "A flyback constant frequency ZCS-ZVS quasi-resonant converter", Microelectr‌oni‌cs Journal, Vol. 29, no. 8, pp. 495-504, 1998, https://doi.org/10.1016/S0026-2692(97)00110-9
[14] Folmer, S., Stala, R., "Dc-dc high voltage gain switched capacitor converter with multilevel output voltage and zero-voltage switching", IEEE Access, Vol. 9, pp. 129692-129705, 2021, https://doi.org/10.1109/ACCESS.2‌021.31‌11546
[15] Mirtalaee, M., Amani-Nafchi, R., "Boost high step-up dc/dc converter with coupled inductors and diode-capacitor Technique", Journal of Intelligent Procedures in Electrical Technology, Vol. 10, No. 39, pp. 3-12, 2019, https://doi.org/10.1109/JESTIE.2022.3173909
[16] Liu, F., Liu, W., Zha, X., Yang, H., Feng, K., "Solid-state circuit breaker snubber design for transient overvoltage suppression at bus fault interruption in low-voltage dc microgrid", IEEE Trans. on Power Electronics, Vol. 32, No. 4, pp. 3007-3021, 2017, https://doi.org/10.1109/TPE‌L.2016.2574751
[17] Tseng, K.C., Huang, H.S., Cheng, C.A., "Integrated boost-forward-flyback converter with high step-up for green energy power-conversion applications", IET Power Electronics, Vol. 14, no. 1, pp. 27-37, Jan. 2021, https://doi.o‌rg/1‌0.1049/p‌el2.12003
[18] Li, W., Fan, L., Zhao, Y., He, X., Xu, D., Wu, B., "High-step-up and high-efficiency fuel-cell power-generation system with active-clamp flyback–forward converter", IEEE Trans. on Industrial Electronics, Vol. 59, No. 1, pp. 599-610, 2012, https://doi.org/10.1109/TIE.20‌11.213‌04‌9‌9
[19] Wang, D., He, X., Shi, J., "Design and analysis of an interleaved flyback–forward boost converter with the current autobalance characteristic", IEEE Trans. on Power Electronics, Vol. 25, No. 2, pp. 489-498, Feb. 2010, https://doi.org/10.1109/TPEL.2009.2025762
[20] Moral, D.L., Barrado, A., Sanz, M., Lázaro, A., Fernández, C., Zumel, P., "Analysis and implementation of the autotransformer forward-flyback converter applied to photovoltaic systems", Solar Energy, Vol. 194, pp. 995-1012, 2019, https://doi.org/10.1016/j.solener.2019.10.082
[21] Eshkevari, A.L., Mosallanejad, A., Sepasian, M., "Design, modelling, and implementation of a modified double-switch flyback-forward converter for low power applica‌tio‌ns", IET Power Electronics, Vol. 12, No. 4, pp. 739-748, 2019, https://doi.org/10.1049/iet-pel.2018.5788
[22] Kianpour, A., Shahgholian, G., "A floating-output interleaved boost DC–DC converter with high step-up gain", Automatika, Vol. 58, No. 1, pp. 18-26, 2017. https://doi.org/10.1080/00051144.2017.1305605
[23] Ahmed, O.A., Bleijs, J.A.M., "Modelling and experim‌ental verification of the effect of parasitic elements on the per‌formance of an active-clamped current-fed dc–dc converter", Simulation Modelling Practice and Theory, Vol. 59, pp. 71-88, Dec. 2015, https://doi.org/10.101‌6/j.sim‌pat.2015.09.002
[24] Sharifiyana, O., Dehghani, M., Shahgholian, G., Mirtalaei, S.M.M., Jabbari, M., "Non-isolated boost converter with new active snubber structure and energy recovery capability", Journal of Circuits, Systems and Computers, Vol. 32, No. 5, Article Number: 2350084, 2023, https://doi.or‌g/10.1142/S0218126623500846
[25] Zhu, B., Wang, H., Zhang Y., Chen, S., "Buck-based active-clamp circuit for current-fed isolated dc–dc converters", IEEE Trans. on Power Electronics, Vol. 37, No. 4, pp. 4337-4345, 2022, https://doi.org/10.1109/‌TPEL.202‌1‌.3121704
[26] Zhong, S., Xu J., Zhou, X., "High-efficiency zero-voltage switching single-stage switching amplifier with half-bridge active clamping circuit", IEEE Trans. on Industrial Ele‌ct‌‌ronics, Vol. 65, No. 11, pp. 8574-8584, 2018, https://doi.org/10.1109/TIE.2018.2815953
[27] Meng, T., Yu, S., Ben, H., Wei, G., "A family of multilevel passive clamp circuits with coupled inductor suitable for single-phase isolated full-bridge boost PFC converter", IEEE Trans. on Power Electro‌nics, Vol. 29, No. 8, pp. 4348-4356, 2014, https://doi.org/1‌0.1109/TPEL.20‌1‌3.2‌‌296‌116
[28] Ai, J., Lin, M., Yin, M., "A family of high step-up cascade dc–dc converters with clamped circuits", IEEE Trans. on Power Electronics, Vol. 35, No. 5, pp. 4819-4834, 2020, https://doi.org/10.1109/TPEL.2019.2943502
[29] Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., Blaabjerg, F., Lehman, B., "Step-up dc–dc converters: A comprehensive review of voltage-boosting techniques, topologies, and applications", IEEE Trans. on Power Electronics, Vol. 32, No. 12, pp. 9143-9178, 2017, https://doi.org/10.1109/T‌‌PEL.2017.2652318
[30] Ai, J., Lin, M., Lin, T., "High step-up dc–dc converter with three capacitors clamped circuits for reduced out capacitor stress", IET Power Electronics, Vol. 13, No. 10, pp. 1974-1983, 2020, https://doi.org/10.1049/iet-pel.2019.1‌34‌7
[31] Koç, Y., Birbir, Y., Bodur, H., "Non-isolated high step-up DC/DC converters– An overview", Alexandria Engineering Journal, Vol. 61, No. 2, pp. 1091-1132, 2022, https://doi.or‌g/10.10‌16/j.aej.2021.06.071