[1] Baharizadeh, M., Karshenas, H.R., Guerrero, J. M., "An improved power control strategy for hybrid AC-DC microgrids", International Journal of Electrical Power and Energy Systems, Vol. 95, pp. 364-373, Feb. 2018, https://doi.org/10.1016/j.ijepes.2017.08.036.
[2] Shojaeian, H., Hasanzadeh, S., Salehi, S.M., "A single switch high voltage gain dc-dc converter based on coupled inductor and switched-capacitor for renewable energy systems", Proceeding of the IEEE/PEDSTC, pp. 1-6, Tabriz, Iran, 2021, https://doi.org/10.1109/PEDSTC52094.2021.9405931.
[3] Sedaghati F., "A bidirectional dc-dc converter with zero voltage switching capability for energy storage application". Energy Engineering and Managementis, Vol. 9, No. 2, pp. 48-63, 2019, https://doi.org/10.22052/9.2.48.
[4] Hema Rani, P., Navasree, S., George, S., Ashok, S., "Fuzzy logic supervisory controller for multi-input non-isolated DC to DC converter connected to DC grid", International Journal of Electrical Power and Energy Systems, Vol. 112, pp. 49-60, 2019, https://doi.org/10.1016/j.ijepes.2019.04.018.
[5] Lee, S.W., Do, H.L., "Soft-switching two-switch resonant ac–dc converter with high power factor", IEEE Trans. on Industrial Electronics, Vol. 63, No. 4, pp. 2083-2091, 2016, https://doi.org/10.1109/TIE.2015.2505675.
[6] Eshaghpour, I., Delshad, M., Javadi, S., "A new soft switching high step-up converter ability to increase parallel branches without the need for a new auxiliary circuit", Journal of Intelligent Procedures in Electrical Technology, Vol. 14, No. 55, pp. 43-54, 2023, https://dorl.net/dor/20.1001.1.23223871.1402.14.55.4.2.
[7] Haghshenas, G., Mirtalaei, S.M.M., Mordmand, M., Shahgholian, G., "High step-up boost-flyback converter with soft switching for photovoltaic applications", Journal of Circuits, Systems, and Computers, Vol. 28, No. 1, pp. 1-16, 2019, https://doi.org/10.1142/S0218126619500142.
[8] Shojaeian, H., Hasanzadeh, S., Heydari, M., "High efficient and high step-up dual switches converter based on three coupled inductors", International Journal of Industrial Electronics Control and Optimization, Vol. 1, No. 2, pp. 143-152, 2018, https://dorl.net/dor/20.1001.1.26453517.2018.1.2.8.5.
[9] Revathi, B.S., Mahalingam, P., Gonzalez-Longatt, F., "Interleaved high gain dc-dc converter for integrating solar PV source to DC bus", Solar Energy, Vol. 188, pp. 924-934, 2019, https://doi.org/10.1016/j.solener.2019.06.072.
[10] Goncalves, P., Agostini, J.E., "Generalized analysis of the high-voltage-gain interleaved ZVS boost-flyback converter", IET Power Electronics, Vol. 13, No. 11, pp. 2361-2371, 2020, https://doi.org/10.1049/iet-pel.2019.1373
[11] Fani, B., Delshad, M., Nazarpour, D., "A new hard switching bidirectional converter with high power density", Journal of Intelligent Procedures in Electrical Technology, Vol. 1, No. 1, pp 51-56, 2010, https://dorl.net/dor/20.1001.1.23223871.1389.1.1.6.5
[12] Elserougi, A., Abdelsalam, I., Massoud, A., Ahmed, S., "A bidirectional non-isolated hybrid modular DC–DC converter with zero-voltage switching", Electric Power Systems Research, Vol. 167, pp. 277-289, 2019, https://doi.org/10.1016/j.epsr.2018.11.009
[13] Dananjayan, P., Shram, V., Chellamuthu, C., "A flyback constant frequency ZCS-ZVS quasi-resonant converter", Microelectronics Journal, Vol. 29, no. 8, pp. 495-504, 1998, https://doi.org/10.1016/S0026-2692(97)00110-9
[14] Folmer, S., Stala, R., "Dc-dc high voltage gain switched capacitor converter with multilevel output voltage and zero-voltage switching", IEEE Access, Vol. 9, pp. 129692-129705, 2021, https://doi.org/10.1109/ACCESS.2021.3111546
[15] Mirtalaee, M., Amani-Nafchi, R., "Boost high step-up dc/dc converter with coupled inductors and diode-capacitor Technique", Journal of Intelligent Procedures in Electrical Technology, Vol. 10, No. 39, pp. 3-12, 2019, https://doi.org/10.1109/JESTIE.2022.3173909
[16] Liu, F., Liu, W., Zha, X., Yang, H., Feng, K., "Solid-state circuit breaker snubber design for transient overvoltage suppression at bus fault interruption in low-voltage dc microgrid", IEEE Trans. on Power Electronics, Vol. 32, No. 4, pp. 3007-3021, 2017, https://doi.org/10.1109/TPEL.2016.2574751
[17] Tseng, K.C., Huang, H.S., Cheng, C.A., "Integrated boost-forward-flyback converter with high step-up for green energy power-conversion applications", IET Power Electronics, Vol. 14, no. 1, pp. 27-37, Jan. 2021, https://doi.org/10.1049/pel2.12003
[18] Li, W., Fan, L., Zhao, Y., He, X., Xu, D., Wu, B., "High-step-up and high-efficiency fuel-cell power-generation system with active-clamp flyback–forward converter", IEEE Trans. on Industrial Electronics, Vol. 59, No. 1, pp. 599-610, 2012, https://doi.org/10.1109/TIE.2011.2130499
[19] Wang, D., He, X., Shi, J., "Design and analysis of an interleaved flyback–forward boost converter with the current autobalance characteristic", IEEE Trans. on Power Electronics, Vol. 25, No. 2, pp. 489-498, Feb. 2010, https://doi.org/10.1109/TPEL.2009.2025762
[20] Moral, D.L., Barrado, A., Sanz, M., Lázaro, A., Fernández, C., Zumel, P., "Analysis and implementation of the autotransformer forward-flyback converter applied to photovoltaic systems", Solar Energy, Vol. 194, pp. 995-1012, 2019, https://doi.org/10.1016/j.solener.2019.10.082
[21] Eshkevari, A.L., Mosallanejad, A., Sepasian, M., "Design, modelling, and implementation of a modified double-switch flyback-forward converter for low power applications", IET Power Electronics, Vol. 12, No. 4, pp. 739-748, 2019, https://doi.org/10.1049/iet-pel.2018.5788
[22] Kianpour, A., Shahgholian, G., "A floating-output interleaved boost DC–DC converter with high step-up gain", Automatika, Vol. 58, No. 1, pp. 18-26, 2017. https://doi.org/10.1080/00051144.2017.1305605
[23] Ahmed, O.A., Bleijs, J.A.M., "Modelling and experimental verification of the effect of parasitic elements on the performance of an active-clamped current-fed dc–dc converter", Simulation Modelling Practice and Theory, Vol. 59, pp. 71-88, Dec. 2015, https://doi.org/10.1016/j.simpat.2015.09.002
[24] Sharifiyana, O., Dehghani, M., Shahgholian, G., Mirtalaei, S.M.M., Jabbari, M., "Non-isolated boost converter with new active snubber structure and energy recovery capability", Journal of Circuits, Systems and Computers, Vol. 32, No. 5, Article Number: 2350084, 2023, https://doi.org/10.1142/S0218126623500846
[25] Zhu, B., Wang, H., Zhang Y., Chen, S., "Buck-based active-clamp circuit for current-fed isolated dc–dc converters", IEEE Trans. on Power Electronics, Vol. 37, No. 4, pp. 4337-4345, 2022, https://doi.org/10.1109/TPEL.2021.3121704
[26] Zhong, S., Xu J., Zhou, X., "High-efficiency zero-voltage switching single-stage switching amplifier with half-bridge active clamping circuit", IEEE Trans. on Industrial Electronics, Vol. 65, No. 11, pp. 8574-8584, 2018, https://doi.org/10.1109/TIE.2018.2815953
[27] Meng, T., Yu, S., Ben, H., Wei, G., "A family of multilevel passive clamp circuits with coupled inductor suitable for single-phase isolated full-bridge boost PFC converter", IEEE Trans. on Power Electronics, Vol. 29, No. 8, pp. 4348-4356, 2014, https://doi.org/10.1109/TPEL.2013.2296116
[28] Ai, J., Lin, M., Yin, M., "A family of high step-up cascade dc–dc converters with clamped circuits", IEEE Trans. on Power Electronics, Vol. 35, No. 5, pp. 4819-4834, 2020, https://doi.org/10.1109/TPEL.2019.2943502
[29] Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., Blaabjerg, F., Lehman, B., "Step-up dc–dc converters: A comprehensive review of voltage-boosting techniques, topologies, and applications", IEEE Trans. on Power Electronics, Vol. 32, No. 12, pp. 9143-9178, 2017, https://doi.org/10.1109/TPEL.2017.2652318
[30] Ai, J., Lin, M., Lin, T., "High step-up dc–dc converter with three capacitors clamped circuits for reduced out capacitor stress", IET Power Electronics, Vol. 13, No. 10, pp. 1974-1983, 2020, https://doi.org/10.1049/iet-pel.2019.1347
[31] Koç, Y., Birbir, Y., Bodur, H., "Non-isolated high step-up DC/DC converters– An overview", Alexandria Engineering Journal, Vol. 61, No. 2, pp. 1091-1132, 2022, https://doi.org/10.1016/j.aej.2021.06.071