امکان‌سنجی استفاده از سیستم ذخیرۀ یخ در سیستم‌های تهویۀ مطبوع ساختمان‌های اداری در مناطق گرمسیر ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی مکانیک، دانشگاه دریانوردی و علوم دریایی چابهار، چابهار، ایران

2 گروه مهندسی مکانیک و مهندسی کشتی، دانشگاه دریانوردی و علوم دریایی چابهار، چابهار، ایران

چکیده

سیستم‌های تهویۀ مطبوع در ایران بخش قابل ‌توجهی از مصرف برق در ساختمان‏ها را به خود اختصاص می‌دهند. بنابراین استفاده از فناوری‌های نوین برای کاهش مصرف برق به‌خصوص در مناطق گرمسیر جنوب کشور یک امر ضروری برای مهندسان و محققان است. در این تحقیق، ترکیب سیستم ذخیرۀ یخ با سیستم تهویۀ مطبوع یک ساختمان به‌منظور کاهش مصرف انرژی الکتریکی مورد مطالعه قرار گرفته است. به این منظور، یک ساختمان اداری در چابهار- ایران (منطقه‌ای با بار سرمایشی زیاد) برای تحقیق در نظر گرفته شده و در شرایط موجود و سیستم ذخیرۀ یخ افزوده‌‌شده در محیط نرم‌افزار TRNSYS شبیه‌سازی و مورد مطالعه قرار گرفته است. مطالعه نشان می‌دهد که سیستم‌ ذخیرۀ یخ در عملکرد با استراتژی بار جزئی، کارآمدتر از سایر استراتژی‏های عملکردی است. همچنین مشخص شد که به‌کارگیری سیستم ذخیرۀ یخ 89/37% از کل برق مصرفی سیستم تهویۀ مطبوع را کاهش داده و این سیستم توانایی انتقال 9/37% از انرژی مصرفی از ساعت‌های پیک بار به ساعت‌های کم‌بار و متوسط‌بار را دارد. از لحاظ اقتصادی نیز مطالعه نشان می‌دهد که با استفاده از سیستم ذخیرۀ یخ در استراتژی بار جزئی، در حدود 62% به‌طور میانگین در هزینه‌های برق کاهش به عمل می‌آید.

کلیدواژه‌ها

موضوعات


[1] https://weather.com/weather/monthly.
[2] ASHRAE, ASHREA Handbook, HVAC Systems and Equipment’s (2008).
[3] Erdemir, D.,  Altuntop, N. and  Çengel, Y.A., "Experimental investigation on the effect of ice storage system on electricity consumption cost for a hypermarket", Energy and Buildings, Vol. 251, pp. 111368, 2021, https://doi.org/10.1016/j.enbuild.2021.111368.
[4] Rismanchi, B., Saidur, R., Masjuki, H.H. and Mahlia, T.M.I., "Energetic, economic and environmental benefits of utilizing the ice thermal storage systems for office building applications", Energy and Buildings, Vol. 50, pp.347-354, 2012,  https://doi.org/10.1016/j.enbuild.2012.04.001.
[5] Hu, C., Li, M., Wang, Y., Li, G.,  Ma, X., Du, W.,  Zhou, X. and  Zhang, Y., "Preliminary investigation on pilot-scale photovoltaic-driven cold storage with ice thermal storage based on vapor compression refrigeration cycle", Sustainable Energy Technologies and Assessments, Vol. 45, pp. 101187, 2021, https://doi.org/ https://doi.org/10.1016/j.seta.2021.101187.
[6] Ahn, J.H., Kim, H., Kim, J.H. and Kim, J.Y., "Evaporative cooling performance characteristics in ice thermal energy storage with direct contact discharging for food cold storage", Applied Energy, Vol. 330, Part A, pp. 120334, 2023,  https://doi.org/10.1016/j.apenergy.2022.120334.
[7] Fadi, A.G. and Dag, R.O., "Performance and feasibility of utilizing solar powered ice storage system for space cooling applications", Energy Conversion and Management: X, Vol. 16, pp. 100319, 2022,  https://doi.org/10.1016/j.ecmx.2022.100319.
[8] Rahgozar, S., Dehghan, M., Pourrajabian, A. and Haghgou, H., "Economic feasibility of ice storage systems for office building applications: a climate sensitivity analysis", Journal of Energy Storage, Vol. 45, pp.103712, 2022,  https://doi.org/10.1016/j.est.2021.103712.
[9] Liang, H., Yanfeng, L., Dengjia, W., Xi, L. and Huaican, L., "Feasibility analysis and feature comparison of cold thermal energy storage for off-grid pv Air-conditioned Buildings in the Tropics", Energy Conversion and Management, Vol. 254, pp. 115176, 2022,  https://doi.org/10.1016/j.enconman.2021.115176.
[10] Ismail, M.S., Wael, M.E.M. and Mohamed, E.h. "Utilizing the solar ice storage system in improving the energy, exergy, economic and environmental assessment of conventional air conditioning system", Alexandria Engineering Journal, Vol. 61, No. 10, pp. 8149-8160, 2022,  https://doi.org/10.1016/j.aej.2022.02.015.
[11] Rahdar, M.H., Emamzadeh, A. and Ataei, A., "A comparative study on pcm and ice thermal energy storage tank for air-conditioning systems in office buildings", Applied Thermal Engineering, Vol. 96. pp. 391-399, 2016,  https://doi.org/10.1016/j.applthermaleng.2015.11.107.
[12] Liu, Z., Quan, Z., Zhao, Y., Jing, H., Liu, X.  and Wang, L., "Experimental research on the performance of ice thermal energy storage device based on micro heat pipe arrays", Applied Thermal Engineering, Vol. 185, pp. 116452, 2021,  https://doi.org/10.1016/j.applthermaleng.2020.116452.
[13] Heine, K., Tabares-Velasco, P.C. and Deru, M., "Energy and cost assessment of packaged ice energy storage implementations using open studio measures", Energy and Buildings, Vol. 248, pp. 111189, 2021,  https://doi.org/10.1016/j.enbuild.2021.111189.
[14] Abdullah, M.O., Yii, L.P., Junaidi, E., Tambi, G. and Mustapha, M.A., "Electricity cost saving comparison due to tariff change and ice thermal storage (ITS) usage based on a hybrid centrifugal-ITS system for buildings: a university district cooling perspective", Energy and Buildings, Vol. 67, pp. 70-78, 2013,  https://doi.org/10.1016/j.enbuild.2013.08.008.
[15] Asgari, H., Mehdipour, R. and Shafiei, D., "Technical and economic evaluation of ice thermal energy storage performance in different climates for official buildings in iran", Energy Engineering and Management, Vol. 10, No. 1, pp. 72-81, 2020, (In Persian) https://doi.org/10.22052/10.1.72.
[16] Majidzadeh, M., "Development of a modified energy saving glass for energy management of air conditioning system and transmission improvement of in-service frequency bands", Energy Engineering and Management, Vol. 9, No. 1, pp. 48-55, 2019, (In Persian) https://doi.org/10.22052/9.1.48.
[17] Kargarsharifabad, H., Armaghani, T., Bagherie Behbahani, M. and Heidari, M., "Numerical analysis of inlet and outlet room air vent position for reaching the best ventilation condition with an energy approach", Energy Engineering and Management, Vol. 11, No. 1, pp. 76-87, 2021, (In Persian) https://doi.org/10.22052/11.1.76.
[18] Sanaye, S. and Hekmatian, M., "Ice thermal energy storage (ITES) for air-conditioning application in full and partial load operating modes", International Journal of Refrigeration, Vol. 66, pp. 181-197, 2016,  https://doi.org/10.1016/j.ijrefrig.2015.10.014.
[19] https://www.iranboom.ir/.
[20] http://www.trnsys.com/support/index.html.
[21] Chaung, T.W. and Yao, H.T., "Design of an ice thermal energy storage system for a building of hospitality operation", International Journal of Hospitality Management, Vol. 46, pp. 46-54, 2015,  https://doi.org/10.1016/j.ijhm.2015.01.005.
[22] Arcuri, B., Spataru, C. and Barrett, M., "Evaluation of ice thermal energy storage (ITES) for commercial buildings in cities in brazil", Sustainable Cities and Society, Vol. 29, pp. 178-192, 2017,  https://doi.org/10.1016/j.scs.2016.12.011.
[23] Alva, G., Lin, Y. and Fang, G., "An overview of thermal energy storage systems", Energy, Vol. 144, pp. 341-378, 2018,  https://doi.org/10.1016/j.energy.2017.12.037.
[24] Yi, W. and Dong, W., "Modeling and simulation of discharging charactristics of external melt-ice-on-coil storage system", Internatioanl Jurnal of Smart Home, Vol. 9, No. 2, pp.179-192, 2015, https://doi.org/10.14257/ijsh.2015.9.2.17.
[25] MacPhee, D., Dincer, I., "Performance assessment of some ice TES systems", International Journal of Thermal Sciences, Vol. 48, No. 12, pp. 2288-2299, 2009,  https://doi.org/10.1016/j.ijthermalsci.2009.03.012.
[26] Jekel, T.B., Modeling of ice-storage system, Univercity of Wisconsin, 1991.
[27] 19th Topic, 1392, "Saving in Energy Consumption, Iran National Buildings Regulations", pp. 88-96.
[28] ASHRAE, Handbook Fundamentals, Physical Properties of Materials, 2005.
[29] https://www.moe.gov.ir/.