مدل‌سازی عددی و ارزیابی عملیات پیگ‌رانی در خط لوله به روش SPH با رویکرد بهینه‌سازی عملکرد پیگ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه یزد، یزد، ایران

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران

چکیده

با توجه به اهمیت عملیات پیگ‌رانی در خط لوله برای مقاصدی همچون نظارت-تمیزکاری که منجر به افزایش عمر مفید شبکۀ انتقال و مدیریت و بهینه‌سازی مصرف انرژی در صنایع نفت-گاز می‌شود، ارائۀ مدل‌های مطالعاتی دقیق در این حوزه از اهمیت بالایی برخوردار بوده‌ و به‌عنوان یک نیاز پژوهشی قلمداد می‌گردد. با‌ توجه به مزیت‌های روش‌های بدون شبکه‌‌بندی، در ‌این پژوهش برای اولین بار مدلی برای ارزیابی جریان پیرامون پیگ با بهره‌گیری از روش هیدرودینامیک ‌ذرات‌ هموار (SPH) و با استفاده از مدل k-ε استاندارد برای شبیه‌سازی آشفتگی جریان ارائه و عملکرد مدل بر اساس نمونه آزمایشگاهی ارزیابی و اعتبارسنجی گردیده است، نتایج حاصل نشان داد که میزان میانگین خطای مدل SPH نسبت به مدل آزمایشگاهی کمتر از 5% بوده که بیانگر دقت بالا و عملکرد قابل ‌قبول مدل پژوهش بوده است. پس از اعتبارسنجی عملکرد مدل پژوهش، شبیه‌سازی جریان پیرامون پیگ ساکن و متحرک مدل‌سازی شده و نتایج حاصل با نتایج عددی موجود مورد مقایسه و ارزیابی قرار گرفته است، علاوه بر این با بهره‌گیری از الگوریتم فراابتکاری گرگ‌های خاکستری (GWO) مطالعاتی بر پارامتر قطر نسبی پیگ کنارگذر برای دستیابی به مقادیر بهینه این پارامتر پیاده‌سازی شده است، نتایج حاصل از مدل بهینه‌یابی نشان داد که میزان قطر نسبی بهینۀ پیگ کنارگذر برابر با d⁄D=0.418 بوده است. نتایج حاصل از این پژوهش نشان ‌می‌دهد که مدل ارائه‌شده دارای دقت ‌قابل ‌قبول در مدل‌سازی جریان پیرامون پیگ کنارگذر در لوله بوده ‌است، همچنین می‌تواند به‌عنوان یک مدل مرجع بر پایۀ روش SPH برای مدل‌سازی جریان‌ پیرامون پیگ کنارگذر متحرک جهت ارزیابی و انجام مطالعات عملیات پیگ‌رانی در خط ‌لوله به‌کارگیری ‌شود.

کلیدواژه‌ها

موضوعات


[1] Wu, H. L., Van Spronsen, G., "Slug reduction with high by-pass pigs–a mature technology", in 12th International Conference on Multiphase Production Technology. 2005: OnePetro.
[2] Ly, K. T., Blumer, D. J., Bohon, W. M., Chan, A., "Novel chemical dispersant for removal of Organic/Inorganic schmoo scale in produced water injection systems", in CORROSION 98. 1998: OnePetro.
[3] Exhibit, O. C. D., "Reducing Methane Emissions: Best Practice Guide", 2019.
[4] Tao, Y., Chuanxian, L., Lijun, L., Hongjun, C., Peng, G., Wanyu, Z., Wenping, D., "Research on Closed-Loop Safety Production System of Hot Oil Pipeline Based on Big Data Mining", In ASME Asia Pacific Pipeline Conference, 2019, Vol. 58912: American Society of Mechanical Engineers, p. V001T11A001, https://doi.org/10.1115/appc2019-7609.
[5] Hendrix, M. H. W., Liang, X., Breugem, W. P., Henkes, R. A. W. M., "Characterization of the pressure loss coefficient using a building block approach with application to by-pass pigs", Journal of Petroleum Science and Engineering, Vol. 150, pp. 13-21, 2017, https://doi.org/10.1016/j.petrol.2016.11.009.
[6] Money, N., Cockfield, D., Mayo, S., Smith, G., "Dynamic speed control in high velocity pipelines", Pipeline Gas J, Vol. 239, No. 8, pp. 30-38, 2012.
[7] Ayala, L. F., Adewumi, M. A., "Low-liquid loading multiphase flow in natural gas pipelines", J. Energy Resour. Technol., Vol. 125, No. 4, pp. 284-293, 2003, https://doi.org/10.1115/1.1616584.
[8] Davoudi, M., Heidari, Y., Mansoori, S. A. A., "Field experience and evaluation of the South Pars sea line pigging, based on dynamic simulations", Journal of Natural Gas Science and Engineering, Vol. 18, pp. 210-218, 2014, https://doi.org/10.1016/j.jngse.2014.02.013.
[9] Jamshidi, B., Sarkari, M., "Simulation of pigging dynamics in gas-liquid two-phase flow pipelines", Journal of Natural Gas Science and Engineering, Vol. 32, pp. 407-414, 2016, https://doi.org/10.1016/j.jngse.2016.04.018.
[10] Li, Q., Duan, M., Gao, Q. "Severe slugging in deepwater risers: A coupled numerical technique for design optimisation", Ocean Engineering, Vol. 152, pp. 234-248, 2018, https://doi.org/10.1016/j.oceaneng.2018.01.070.
[11] Xu, X. X., Gong, J., "Pigging simulation for horizontal gas-condensate pipelines with low-liquid loading", Journal of Petroleum Science and Engineering, Vol. 48, No. 3-4, pp. 272-280, 2005, https://doi.org/10.1016/j.petrol.2005.06.005.
[12] Zhu, H., Gao, Y., Zhao, H., "Experimental investigation on the flow-induced vibration of a free-hanging flexible riser by internal unstable hydrodynamic slug flow", Vol. 164, pp. 488-507, 2018, https://doi.org/10.1016/j.oceaneng.2018.06.071.
[13] Groote, G. A., van de Camp, P. B., Veenstra, P., Broze, G., Henkes, R. A., "By-pass pigging without or with speed control for gas-condensate pipelines", in Abu Dhabi International Petroleum Exhibition and Conference, 2015: OnePetro, https://doi.org/10.2118/177819-ms.
[14] Olaniyan, Y., & Larrey, D., "Bypass pig modeling-A three phase gas condensate pipeline field case", in 9th North American Conference on Multiphase Technology, 2014: OnePetro.
[15] Van Spronsen, G., Entaban, A., Mohamad Amin, K., Sarkar, S., Henkes, R. A. W. M., "Field experience with by-pass pigging to mitigate liquid surge", in 16th International Conference on Multiphase Production Technology, 2013: OnePetro.
[16] Mirshamsi, M., & Rafeeyan, M., "Speed control of pipeline pig using the QFT method", Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, Vol. 67, No. 4, pp. 693-701, 2012, https://doi.org/10.2516/ogst/2012008.
[17] Nguyen, T. T., Kim, S. B., Yoo, H. R., Rho, Y. W., "Modeling and simulation for pig with bypass flow control in natural gas pipeline", KSME International Journal, Vol. 15, No. 9, pp. 1302-1310, 2001, https://doi.org/10.1007/bf03185671.
[18] Nguyen, T. T., Yoo, H. R., Rho, Y. W., & Kim, S. B., "Speed control of PIG using bypass flow in natural gas pipeline", in ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570), 2001, Vol. 2: IEEE, pp. 863-868, https://doi.org/10.1109/isie.2001.931581.
[19] Zhu, X., Zhang, S., Tan, G., Wang, D., & Wang, W., "Experimental study on dynamics of rotatable bypass-valve in speed control pig in gas pipeline", Measurement, Vol. 47, pp. 686-692, 2014, https://doi.org/10.1016/j.measurement.2013.08.060.
[20] Entaban, A., Ismail, A., Jambari, M., Ting, P., Amin, K. M., Ping, Zou, S., van Spronsen, G., "By-Pass pigging-a'simple'technology with significant business impact", in International Petroleum Technology Conference, 2013: OnePetro, https://doi.org/10.2523/iptc-16905-ms.
[21] Lee, H. S., Agustiawan, D., Jati, K. I., Aulia, M., Thomas, S. A., Appleyard, S. P., "Bypass pigging operation experience and flow assurance study", in Offshore Technology Conference. 2012: OnePetro, https://doi.org/10.4043/23044-ms.
[22] Park, S., Kim, M., Nydal, O. J., Lee, I. B., "Mitigation of pig-induced slugs by combination of by-pass pig and inlet separator dual control valves", in Offshore Technology Conference Asia. 2016: OnePetro, https://doi.org/10.4043/26550-ms.
[23] Van Spronsen, G., Entaban, A., Mohamad Amin, K., Sarkar, S., Henkes, R. A. W. M., "Field experience with by-pass pigging to mitigate liquid surge", in 16th International Conference on Multiphase Production Technology, 2013: OnePetro.
[24] Chen, J., Luo, X., Zhang, H., He, L., Chen, J., Shi, K., "Experimental study on movement characteristics of bypass pig", Journal of Natural Gas Science and Engineering, Vol. 59, pp. 212-223, 2018, https://doi.org/10.1016/j.jngse.2018.08.023.
[25] Chen, J., He, L., Luo, X., Zhang, H., Li, X., Liu, H., He, S., Lu, L., "Characterization of bypass pig velocity in gas pipeline: An experimental and analytical study", Journal of Natural Gas Science and Engineering, Vol. 73, p. 103059, 2020, https://doi.org/10.1016/j.jngse.2019.103059.
[26] Azpiroz, J. E., Hendrix, M. H. W., Breugem, W. P., Henkes, R. A. W. M., "CFD modelling of bypass pigs with a deflector disk", in 17th International Conference on Multiphase Production Technology, 2015: OnePetro.
[27] Singh, A., Henkes, R. A. W. M., "CFD modeling of the flow around a by-pass pig", in 8th North american conference on multiphase technology, 2012: OnePetro.
[28] Hendrix, M. H. W., IJsseldijk, H. P., Breugem, W. P., Henkes, R. A. W. M., "Experiments and modeling of by-pass pigging under low-pressure conditions", Journal of Process Control, Vol. 71, pp. 1-13, 2018, https://doi.org/10.1016/j.jprocont.2018.08.010.
[29] Salazar, A. O., Araujo, V. G., Lima, G. F., Freitas, V. C., "Study and speed control of a Pipeline Inspection Gauge (PIG)", in 2021 IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 2021: IEEE, pp. 1-4, https://doi.org/10.1109/intercon52678.2021.9532931.
[30] Naeini, H. S., Soorgee, M. H., "Experimental investigation on sphere pig movement in multiple thickness pipe", Journal of Natural Gas Science and Engineering, Vol. 95, p. 104152, 2021, https://doi.org/10.1016/j.jngse.2021.104152.
[31] Li, X., He, L., Luo, X., Liu, H., He, S., Li, Q., "Numerical simulation and experimental study of bypass pigging slippage", Ocean Engineering, Vol. 230, p. 109023, 2021, https://doi.org/j.oceaneng.2021.109023.
[32] Chen, J., Luo, X., He, L., Liu, H., Lu, L., Lü, Y., Yang, D., "An improved solution to flow assurance in natural gas pipeline enabled by a novel self-regulated bypass pig prototype: An experimental and numerical study", Journal of Natural Gas Science and Engineering, Vol. 107, p. 104776, 2022, https://doi.org/10.1016/j.jngse.2022.104776.
[33] Liu, Y., Zhu, X., Song, J., Wu, H., Zhang, S., Zhang, S., "Research on bypass pigging in offshore riser system to mitigate severe slugging", Ocean Engineering. Vol. 246, p. 110606, 2022, https://doi.org/10.1016/j.oceaneng.2022.110606.
[34] Yao, B., He, Z., Lu, N., Zhang, S., "A novel PIG and an intelligent pigging scheme based on Deep-learning technology", International Journal of Pressure Vessels and Piping. Vol. 200, p. 104803, 2022, https://doi.org/10.1016/j.ijpvp.2022.104803.
[35] Kim, S., Yoo, K., Koo, B., Kim, D., Yoo, H., Seo, Y., "Speed excursion simulation of PIG using improved friction models", Journal of Natural Gas Science and Engineering. Vol. 97, p. 104371, 2022, https://doi.org/10.1016/j.jngse.2021.104371.
[36] Monaghan, J. J., "Smoothed particle hydrodynamics", Annual review of astronomy and astrophysics, Vol. 30, pp. 543-574, 1992, https://doi.org/10.1146/annurev.aa.30.090192.002551.
[37] Monaghan, J. J., "Smoothed particle hydrodynamics and its diverse applications", Annual Review of Fluid Mechanics, Vol. 44, pp. 323-346, 2012, https://doi.org/10.1146/annurev-fluid-120710-101220.
[38] Liu, M. B., Liu, G., "Smoothed particle hydrodynamics (SPH): an overview and recent developments", Archives of computational methods in engineering, Vol. 17, No. 1, pp. 25-76, 2010, https://doi.org/10.1007/s11831-010-9040-7.
[39] Hou, Q., Kruisbrink, A. C. H., Pearce, F. R., Tijsseling, A. S., Yue, T., "Smoothed particle hydrodynamics simulations of flow separation at bends", Computers & Fluids, Vol. 90, pp. 138-146, 2014, https://doi.org/10.1016/j.compfluid.2013.11.019.
[40] Alvarado-Rodríguez, C. E., Sigalotti, L. D., Klapp, J., Fierro-Santillán, C. R., Aragón, F., Uribe-Ramírez, A. R., "Smoothed Particle Hydrodynamics Simulations of Turbulent Flow in Curved Pipes With Different Geometries: A Comparison With Experiments", Journal of Fluids Engineering, Vol. 143, No. 9, 2021, https://doi.org/10.1115/1.4050514.
[41] Alvarado-Rodríguez, C. E., Klapp, J., Sigalotti, L. D. G., Domínguez, J. M., de la Cruz Sánchez, E., "Nonreflecting outlet boundary conditions for incompressible flows using SPH", Computers & Fluids, Vol. 159, pp. 177-188, 2017, https://doi.org/10.1016/j.compfluid.2017.09.020
[42] Rosić, N. M., Kolarević, M. B., Savić, L. M., Đorđević, D. M., Kapor, R. S., "Numerical modelling of supercritical flow in circular conduit bends using SPH method", Journal of Hydrodynamics, Vol. 29, No. 2, pp. 344-352, 2017, https://doi.org/10.1016/s1001-6058(16)60744-8.
[43] Sigalotti, L. D., Alvarado-Rodríguez, C. E., Klapp, J., Cela, J. M., "Smoothed particle hydrodynamics simulations of water flow in a 90 pipe bend", Water, Vol. 13, No. 8, p. 1081, 2021, https://doi.org/10.3390/w13081081.
[44] De Padova, D., Mossa, M., Sibilla, S., "SPH modelling of hydraulic jump oscillations at an abrupt drop", Water, Vol. 9, No. 10, p. 790, 2017, https://doi.org/10.3390/w9100790.
[45] Idelchik, I. E., "Handbook of hydraulic resistance", in Fuel and Energy Abstracts, 1995, Vol. 4, No. 36, p. 302, https://doi.org/10.1016/0140-6701(95)95890-h.
[46] Churchill, S. W., "Friction-factor equation spans all fluid-flow regimes", 1977.
[47] Violeau, D., Issa, R., "Numerical modelling of complex turbulent freesurface flows with the SPH method: an overview", International Journal for Numerical Methods in Fluids, Vol. 53, No. 2, pp. 277-304, 2007, https://doi.org/10.1002/fld.1292.
[48] Wendland, H., "Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree", Advances in computational Mathematics, Vol. 4, No. 1, pp. 389-396, 1995, https://doi.org/10.1007/bf02123482.
[49] Dehnen, W., Aly, H., "Improving convergence in smoothed particle hydrodynamics simulations without pairing instability", Monthly Notices of the Royal Astronomical Society, Vol. 425, No. 2, pp. 1068-1082, 2012, https://doi.org/10.1111/j.1365-2966.2012.21439.x.
[50] Vacondio, R., Rogers, B. D., Stansby, P. K., Mignosa, P., Feldman, J. "Variable resolution for SPH: a dynamic particle coalescing and splitting scheme", Computer Methods in Applied Mechanics and Engineering, Vol. 256, pp. 132-148, 2013, https://doi.org/10.1016/j.cma.2012.12.014
[51] Mirjalili, S., Mirjalili. S. M., Lewis, A., "Grey wolf optimizer", Advances in engineering software, Vol. 69, pp. 46-61, 2014, https://doi.org/10.1016/j.advengsoft.2013.12.007.
[52] Emmanuel, D. A., Joseph, S., Oyewola, D., Fadele, A. A., Chiroma, H., "Application of grey wolf optimization algorithm: recent trends, issues, and possible horizons", Gazi University Journal of Science, Vol. 35, No. 2, pp. 485-504, 2021, https://doi.org/10.35378/gujs.820885.
[53] Acharya, S., Dutta, S., Myrum, T. A., Baker, R. S., "Turbulent flow past a surface-mounted two-dimensional rib", (1994), https://doi.org/10.1115/1.2910261.
[54] Ramírez, R., Dutra, M., "Evaluating drag force and geometric optimisation of pipeline inspection gadget (PIG) body with bypass", Ingeniería e Investigación, Vol. 31, No. 2, pp. 152-159, 2011, https://doi.org/10.15446/ing.investig.v31n2.23474.