[1] Wu, H. L., Van Spronsen, G., "Slug reduction with high by-pass pigs–a mature technology", in 12th International Conference on Multiphase Production Technology. 2005: OnePetro.
[2] Ly, K. T., Blumer, D. J., Bohon, W. M., Chan, A., "Novel chemical dispersant for removal of Organic/Inorganic schmoo scale in produced water injection systems", in CORROSION 98. 1998: OnePetro.
[3] Exhibit, O. C. D., "Reducing Methane Emissions: Best Practice Guide", 2019.
[4] Tao, Y., Chuanxian, L., Lijun, L., Hongjun, C., Peng, G., Wanyu, Z., Wenping, D., "Research on Closed-Loop Safety Production System of Hot Oil Pipeline Based on Big Data Mining", In ASME Asia Pacific Pipeline Conference, 2019, Vol. 58912: American Society of Mechanical Engineers, p. V001T11A001, https://doi.org/10.1115/appc2019-7609.
[5] Hendrix, M. H. W., Liang, X., Breugem, W. P., Henkes, R. A. W. M., "Characterization of the pressure loss coefficient using a building block approach with application to by-pass pigs", Journal of Petroleum Science and Engineering, Vol. 150, pp. 13-21, 2017, https://doi.org/10.1016/j.petrol.2016.11.009.
[6] Money, N., Cockfield, D., Mayo, S., Smith, G., "Dynamic speed control in high velocity pipelines", Pipeline Gas J, Vol. 239, No. 8, pp. 30-38, 2012.
[7] Ayala, L. F., Adewumi, M. A., "Low-liquid loading multiphase flow in natural gas pipelines", J. Energy Resour. Technol., Vol. 125, No. 4, pp. 284-293, 2003, https://doi.org/10.1115/1.1616584.
[8] Davoudi, M., Heidari, Y., Mansoori, S. A. A., "Field experience and evaluation of the South Pars sea line pigging, based on dynamic simulations", Journal of Natural Gas Science and Engineering, Vol. 18, pp. 210-218, 2014, https://doi.org/10.1016/j.jngse.2014.02.013.
[9] Jamshidi, B., Sarkari, M., "Simulation of pigging dynamics in gas-liquid two-phase flow pipelines", Journal of Natural Gas Science and Engineering, Vol. 32, pp. 407-414, 2016, https://doi.org/10.1016/j.jngse.2016.04.018.
[10] Li, Q., Duan, M., Gao, Q. "Severe slugging in deepwater risers: A coupled numerical technique for design optimisation", Ocean Engineering, Vol. 152, pp. 234-248, 2018, https://doi.org/10.1016/j.oceaneng.2018.01.070.
[11] Xu, X. X., Gong, J., "Pigging simulation for horizontal gas-condensate pipelines with low-liquid loading", Journal of Petroleum Science and Engineering, Vol. 48, No. 3-4, pp. 272-280, 2005, https://doi.org/10.1016/j.petrol.2005.06.005.
[12] Zhu, H., Gao, Y., Zhao, H., "Experimental investigation on the flow-induced vibration of a free-hanging flexible riser by internal unstable hydrodynamic slug flow", Vol. 164, pp. 488-507, 2018, https://doi.org/10.1016/j.oceaneng.2018.06.071.
[13] Groote, G. A., van de Camp, P. B., Veenstra, P., Broze, G., Henkes, R. A., "By-pass pigging without or with speed control for gas-condensate pipelines", in Abu Dhabi International Petroleum Exhibition and Conference, 2015: OnePetro, https://doi.org/10.2118/177819-ms.
[14] Olaniyan, Y., & Larrey, D., "Bypass pig modeling-A three phase gas condensate pipeline field case", in 9th North American Conference on Multiphase Technology, 2014: OnePetro.
[15] Van Spronsen, G., Entaban, A., Mohamad Amin, K., Sarkar, S., Henkes, R. A. W. M., "Field experience with by-pass pigging to mitigate liquid surge", in 16th International Conference on Multiphase Production Technology, 2013: OnePetro.
[16] Mirshamsi, M., & Rafeeyan, M., "Speed control of pipeline pig using the QFT method", Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, Vol. 67, No. 4, pp. 693-701, 2012, https://doi.org/10.2516/ogst/2012008.
[17] Nguyen, T. T., Kim, S. B., Yoo, H. R., Rho, Y. W., "Modeling and simulation for pig with bypass flow control in natural gas pipeline", KSME International Journal, Vol. 15, No. 9, pp. 1302-1310, 2001, https://doi.org/10.1007/bf03185671.
[18] Nguyen, T. T., Yoo, H. R., Rho, Y. W., & Kim, S. B., "Speed control of PIG using bypass flow in natural gas pipeline", in ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570), 2001, Vol. 2: IEEE, pp. 863-868, https://doi.org/10.1109/isie.2001.931581.
[19] Zhu, X., Zhang, S., Tan, G., Wang, D., & Wang, W., "Experimental study on dynamics of rotatable bypass-valve in speed control pig in gas pipeline", Measurement, Vol. 47, pp. 686-692, 2014, https://doi.org/10.1016/j.measurement.2013.08.060.
[20] Entaban, A., Ismail, A., Jambari, M., Ting, P., Amin, K. M., Ping, Zou, S., van Spronsen, G., "By-Pass pigging-a'simple'technology with significant business impact", in International Petroleum Technology Conference, 2013: OnePetro, https://doi.org/10.2523/iptc-16905-ms.
[21] Lee, H. S., Agustiawan, D., Jati, K. I., Aulia, M., Thomas, S. A., Appleyard, S. P., "Bypass pigging operation experience and flow assurance study", in Offshore Technology Conference. 2012: OnePetro, https://doi.org/10.4043/23044-ms.
[22] Park, S., Kim, M., Nydal, O. J., Lee, I. B., "Mitigation of pig-induced slugs by combination of by-pass pig and inlet separator dual control valves", in Offshore Technology Conference Asia. 2016: OnePetro, https://doi.org/10.4043/26550-ms.
[23] Van Spronsen, G., Entaban, A., Mohamad Amin, K., Sarkar, S., Henkes, R. A. W. M., "Field experience with by-pass pigging to mitigate liquid surge", in 16th International Conference on Multiphase Production Technology, 2013: OnePetro.
[24] Chen, J., Luo, X., Zhang, H., He, L., Chen, J., Shi, K., "Experimental study on movement characteristics of bypass pig", Journal of Natural Gas Science and Engineering, Vol. 59, pp. 212-223, 2018, https://doi.org/10.1016/j.jngse.2018.08.023.
[25] Chen, J., He, L., Luo, X., Zhang, H., Li, X., Liu, H., He, S., Lu, L., "Characterization of bypass pig velocity in gas pipeline: An experimental and analytical study", Journal of Natural Gas Science and Engineering, Vol. 73, p. 103059, 2020, https://doi.org/10.1016/j.jngse.2019.103059.
[26] Azpiroz, J. E., Hendrix, M. H. W., Breugem, W. P., Henkes, R. A. W. M., "CFD modelling of bypass pigs with a deflector disk", in 17th International Conference on Multiphase Production Technology, 2015: OnePetro.
[27] Singh, A., Henkes, R. A. W. M., "CFD modeling of the flow around a by-pass pig", in 8th North american conference on multiphase technology, 2012: OnePetro.
[28] Hendrix, M. H. W., IJsseldijk, H. P., Breugem, W. P., Henkes, R. A. W. M., "Experiments and modeling of by-pass pigging under low-pressure conditions", Journal of Process Control, Vol. 71, pp. 1-13, 2018, https://doi.org/10.1016/j.jprocont.2018.08.010.
[29] Salazar, A. O., Araujo, V. G., Lima, G. F., Freitas, V. C., "Study and speed control of a Pipeline Inspection Gauge (PIG)", in 2021 IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 2021: IEEE, pp. 1-4, https://doi.org/10.1109/intercon52678.2021.9532931.
[30] Naeini, H. S., Soorgee, M. H., "Experimental investigation on sphere pig movement in multiple thickness pipe", Journal of Natural Gas Science and Engineering, Vol. 95, p. 104152, 2021, https://doi.org/10.1016/j.jngse.2021.104152.
[31] Li, X., He, L., Luo, X., Liu, H., He, S., Li, Q., "Numerical simulation and experimental study of bypass pigging slippage", Ocean Engineering, Vol. 230, p. 109023, 2021, https://doi.org/j.oceaneng.2021.109023.
[32] Chen, J., Luo, X., He, L., Liu, H., Lu, L., Lü, Y., Yang, D., "An improved solution to flow assurance in natural gas pipeline enabled by a novel self-regulated bypass pig prototype: An experimental and numerical study", Journal of Natural Gas Science and Engineering, Vol. 107, p. 104776, 2022, https://doi.org/10.1016/j.jngse.2022.104776.
[33] Liu, Y., Zhu, X., Song, J., Wu, H., Zhang, S., Zhang, S., "Research on bypass pigging in offshore riser system to mitigate severe slugging", Ocean Engineering. Vol. 246, p. 110606, 2022, https://doi.org/10.1016/j.oceaneng.2022.110606.
[34] Yao, B., He, Z., Lu, N., Zhang, S., "A novel PIG and an intelligent pigging scheme based on Deep-learning technology", International Journal of Pressure Vessels and Piping. Vol. 200, p. 104803, 2022, https://doi.org/10.1016/j.ijpvp.2022.104803.
[35] Kim, S., Yoo, K., Koo, B., Kim, D., Yoo, H., Seo, Y., "Speed excursion simulation of PIG using improved friction models", Journal of Natural Gas Science and Engineering. Vol. 97, p. 104371, 2022, https://doi.org/10.1016/j.jngse.2021.104371.
[36] Monaghan, J. J., "Smoothed particle hydrodynamics", Annual review of astronomy and astrophysics, Vol. 30, pp. 543-574, 1992, https://doi.org/10.1146/annurev.aa.30.090192.002551.
[37] Monaghan, J. J., "Smoothed particle hydrodynamics and its diverse applications", Annual Review of Fluid Mechanics, Vol. 44, pp. 323-346, 2012, https://doi.org/10.1146/annurev-fluid-120710-101220.
[38] Liu, M. B., Liu, G., "Smoothed particle hydrodynamics (SPH): an overview and recent developments", Archives of computational methods in engineering, Vol. 17, No. 1, pp. 25-76, 2010, https://doi.org/10.1007/s11831-010-9040-7.
[39] Hou, Q., Kruisbrink, A. C. H., Pearce, F. R., Tijsseling, A. S., Yue, T., "Smoothed particle hydrodynamics simulations of flow separation at bends", Computers & Fluids, Vol. 90, pp. 138-146, 2014, https://doi.org/10.1016/j.compfluid.2013.11.019.
[40] Alvarado-Rodríguez, C. E., Sigalotti, L. D., Klapp, J., Fierro-Santillán, C. R., Aragón, F., Uribe-Ramírez, A. R., "Smoothed Particle Hydrodynamics Simulations of Turbulent Flow in Curved Pipes With Different Geometries: A Comparison With Experiments", Journal of Fluids Engineering, Vol. 143, No. 9, 2021, https://doi.org/10.1115/1.4050514.
[41] Alvarado-Rodríguez, C. E., Klapp, J., Sigalotti, L. D. G., Domínguez, J. M., de la Cruz Sánchez, E., "Nonreflecting outlet boundary conditions for incompressible flows using SPH", Computers & Fluids, Vol. 159, pp. 177-188, 2017, https://doi.org/10.1016/j.compfluid.2017.09.020
[42] Rosić, N. M., Kolarević, M. B., Savić, L. M., Đorđević, D. M., Kapor, R. S., "Numerical modelling of supercritical flow in circular conduit bends using SPH method", Journal of Hydrodynamics, Vol. 29, No. 2, pp. 344-352, 2017, https://doi.org/10.1016/s1001-6058(16)60744-8.
[43] Sigalotti, L. D., Alvarado-Rodríguez, C. E., Klapp, J., Cela, J. M., "Smoothed particle hydrodynamics simulations of water flow in a 90 pipe bend", Water, Vol. 13, No. 8, p. 1081, 2021, https://doi.org/10.3390/w13081081.
[44] De Padova, D., Mossa, M., Sibilla, S., "SPH modelling of hydraulic jump oscillations at an abrupt drop", Water, Vol. 9, No. 10, p. 790, 2017, https://doi.org/10.3390/w9100790.
[45] Idelchik, I. E., "Handbook of hydraulic resistance", in Fuel and Energy Abstracts, 1995, Vol. 4, No. 36, p. 302, https://doi.org/10.1016/0140-6701(95)95890-h.
[46] Churchill, S. W., "Friction-factor equation spans all fluid-flow regimes", 1977.
[47] Violeau, D., Issa, R., "Numerical modelling of complex turbulent free‐surface flows with the SPH method: an overview", International Journal for Numerical Methods in Fluids, Vol. 53, No. 2, pp. 277-304, 2007, https://doi.org/10.1002/fld.1292.
[48] Wendland, H., "Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree", Advances in computational Mathematics, Vol. 4, No. 1, pp. 389-396, 1995, https://doi.org/10.1007/bf02123482.
[49] Dehnen, W., Aly, H., "Improving convergence in smoothed particle hydrodynamics simulations without pairing instability", Monthly Notices of the Royal Astronomical Society, Vol. 425, No. 2, pp. 1068-1082, 2012, https://doi.org/10.1111/j.1365-2966.2012.21439.x.
[50] Vacondio, R., Rogers, B. D., Stansby, P. K., Mignosa, P., Feldman, J. "Variable resolution for SPH: a dynamic particle coalescing and splitting scheme", Computer Methods in Applied Mechanics and Engineering, Vol. 256, pp. 132-148, 2013, https://doi.org/10.1016/j.cma.2012.12.014
[51] Mirjalili, S., Mirjalili. S. M., Lewis, A., "Grey wolf optimizer", Advances in engineering software, Vol. 69, pp. 46-61, 2014, https://doi.org/10.1016/j.advengsoft.2013.12.007.
[52] Emmanuel, D. A., Joseph, S., Oyewola, D., Fadele, A. A., Chiroma, H., "Application of grey wolf optimization algorithm: recent trends, issues, and possible horizons", Gazi University Journal of Science, Vol. 35, No. 2, pp. 485-504, 2021, https://doi.org/10.35378/gujs.820885.
[53] Acharya, S., Dutta, S., Myrum, T. A., Baker, R. S., "Turbulent flow past a surface-mounted two-dimensional rib", (1994), https://doi.org/10.1115/1.2910261.
[54] Ramírez, R., Dutra, M., "Evaluating drag force and geometric optimisation of pipeline inspection gadget (PIG) body with bypass", Ingeniería e Investigación, Vol. 31, No. 2, pp. 152-159, 2011, https://doi.org/10.15446/ing.investig.v31n2.23474.