سنتز و عملکرد نانوکاتالیزورهای اکسید فلزات سریم و نیکل بر پایۀ زیرکونیا به‌منظور تولید بیودیزل‌

نویسندگان

دانشگاه کاشان

چکیده

امروزه بیودیزل به‌عنوان جایگزینی مناسب برای سوخت‌های فسیلی در نظر گرفته شده است. با توجه به اهمیت زیست‌محیطی بیودیزل، در مطالعۀ حاضر، اکسیدهای ZrO2-NiO و ZrO2-CeO2 با نسبت‌های مولی مختلف با استفاده از روش همرسوبی و سل ژل پچینی سنتز شد و فعالیت‌های کاتالیزوری آن‌ها برای تولید بیودیزل از روغن ذرت و روغن پسماند مورد بررسی قرار گرفت. کاتالیزورهای جدید از لحاظ مورفولوژی، کریستالوگرافی و ترکیب شیمیایی با تکنیک‌های شناخته‌شدۀ پراش اشعۀ ایکس، طیف‌سنجی پراش انرژی پرتو ایکس، میکروسکوپ الکترونی روبشی نشر میدانی و طیف‌سنجی مادون قرمز تبدیل فوریه بررسی شدند. عوامل و پارامترهای مختلف مؤثر در میزان تولید بیودیزل، از جمله نسبت روغن به متانول، دمای واکنش ترانس‌استریفیکاسیون و روش سنتز نانوکاتالیزور برای کاتالیزورهای مورد نظر بهینه شد. نتایج تجربی نشان دادند که استفاده از زیرکونیوم‌‌دی‌اکسید به‌همراه اکسید فلزات به‌عنوان کاتالیزور، باعث افزایش سینتیک و کاهش زمان واکنش تولید بیودیزل می‌شود. همچنین بالاترین عملکرد کاتالیزور در نسبت مولی روغن به متانول (1 به 10) و نسبت مولی 10=Zr/Ni و 10=Zr/Ce مشاهده شد، به‌طوری‌ که بازدهی تبدیل روغن پسماند و روغن ذرت به بیودیزل بر روی کاتالیزور ZrO2-CeO2 به‌ترتیب 92 و 83% با دقت تحلیلی رضایت‌بخش (R.S.D.≤ 4.8٪) و برای کاتالیزور ZrO2-NiO به‌ترتیب 83 و 78% با دقت تحلیلی رضایت‌بخش (R.S.D.≤ 5.3٪) به دست آمد.

کلیدواژه‌ها


[1] Ghosh, T. K. and Prelas, M. A., "Energy resources and systems", Vol. 1, risable resources. New York, Rev. Springer. 2009. [2] Srivastava, A., Prasad, R., "Triglycerides-based diesel fuels", Renewable & Sustainable Energy Reviews, Vol. 4, pp. 111-133, 2000. [3] Karthikeyan, S. Prathima, A., "Analysis of emissions from use of an algae biofuel with nano-ZrO2", Energy Sources, Vol. 39, pp. 473–479, 2017. [4] ابراهیمی، سهیلا، هاشمی، سید جعفر، «بررسی مقایسه‌ای تولید سوخت بیودیزل از روغن گیاهی آفتابگردان با استفاده از امواج فراصوت و حرارت»، مهندسی و مدیریت انرژی، شمارۀ 2، صفحه 86ـ95، 1398. [5] Aransiola, E .F., Ojumu, T. V., Oyekola, O. O., Madzimbamuto, T. F. and Ikhu-Omoregbe, D. I. O., "A review of current technology for biodiesel production: State of the art", Biomass and Bioenergy. Vol. 61, pp. 276–297, 2014. [6] Sadaf, S., Iqbal, J., Ullah, I., Nawaz Bhatti, H., Nouren, S., Nisar, J. and Iqbal, M., "Biodiesel production from waste cooking oil: An efficient technique to convert waste into biodiesel", Sustainable Cities and Society, Vol. 41, pp. 220-226, 2018. [7] Baskar, G., Selvakumari, I. and Aiswarya, R., "Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst", Bioresource Technology, 2018. [8] Borah, M., Devi, J., Borah, A. R. and Deka, D. "Synthesis and application of Co doped ZnO as heterogeneous nanocatalyst for biodiesel production from non-edible oil", Renewable Energy, Vol. 133, pp. 512-519, 2019. [9] مهدی انصار اردلی، مهدی، صدرعاملی، مجتبی، قبادیان، برات، شاملوعلی‌آبادی، محمدرضا، «تولید دیز‌ل‌زیستی (بیودیزل) از ضایعات کشتارگاهی دام و طیور»، مهندسی و مدیریت انرژی، شماره 1، صفحه 24ـ31، 1394. [10] Ramadhas, A. S., Jayaraj, S. and Muraleedharan, C., "Biodiesel production from high FFA rubber seed oil", Fuel. Vol. 84, pp. 335–340, 2005. [11] Zahedi, A., Mirabdoli, M. and Shayan Nezhad, A., "Commercial optimization of biodiesel production from rapeseed oil as a clean fuel for thermal power plants", Modares Mechanical Engineering, Vol. 16, pp. 135–142, 2016. [12] Baroutian, S., Aroua, M. K., Raman, A. A. A. and Sulaiman, N. M. N., "Density of palm oil-based methyl ester", Journal of Chemical & Engineering Data, Vol. 53, pp. 877–880, 2008. [13] Arzamendi, G., Arguinarena, E., Campo, I., Zabala, S. and Gandía, L. M., "Alkaline and alkaline-earth metals compounds as catalysts for the methanolysis of sunflower oil", Catalysis Today, Vol. 133, pp. 305–313, 2008. [14] Dorado, M. P., Ballesteros, E., López, F. J. and Mittelbach, M., "Optimization of alkali-catalyzed transesterification of Brassica C arinata oil for biodiesel production", Energy & Fuels. Vol. 18, pp. 77–83, 2004. [15] Encinar, J. M., Gonzalez, J. F., Rodriguez, J. J. and Tejedor, A., "Biodiesel fuels from vegetable oils: transesterification of Cynara C ardunculus L oils with ethanol", Energy & Fuels. Vol. 16, pp. 443–450, 2002. [16] Peterson, C. L., Wagner, G. L. and Auld, D. L., "Vegetable oil substitutes for diesel fuel", Transactions of the ASAE, Vol. 26, pp. 322–327, 1983. [17] King, G., "Recent progress in the biofuels research", development and demonstration programme in the UK, Biologist. 1983. [18] Sinha, S., Agarwal, A. K. and Garg, S., "Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization", Energy Conversion and Management, Vol. 49, pp. 1248–1257, 2008. [19] Wan Omar, W. N. N. and Amin, N. A. S., "Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst", Fuel Processing Technology, Vol. 92, pp. 2397-2405, 2011. [20] Freedman, B., Pryde, E. H. and Mounts, T. L., "Variables affecting the yields of fatty esters from transesterified vegetable oils", Journal of the American Oil Chemists' Society, Vol. 61, pp. 1638–1643, 1984. [21] Vicente, G., Martinez, M. and Aracil, J., "Optimisation of integrated biodiesel production. Part I. A study of the biodiesel purity and yield", Bioresource Technology, Vol. 98, pp. 1724–173, 2007. [22] Su, C. H., "Recoverable and reusable hydrochloric acid used as a homogeneous catalyst for biodiesel production", Applied Energy, Vol. 104, pp. 503-509, 2013. [23] Aguila, G., Salinas, D., Jiménez, R., Guerrero, S. and Araya, P., "ZrO2-supported alkali metal (Li, Na, K) catalysts for biodiesel production", Journal of the Chilean Chemical Society, Vol. 61, 2016. [24] Das, S. K. and El-Safty, S. A., "Development of mesoscopically assembled sulfated zirconia nanoparticles as promising heterogeneous and recyclable biodiesel catalysts", ChemCatChem. Vol. 5, pp. 1-11, 2013. [25] Lebaka, V. R., "Potential Bioresources as Future Sources of Biofuels Production: An Overview", Biofuel Technologies, pp. 223–258, 2013. [26] Zabeti, M., Wan Daud, W. M. A. and Aroua, M. K., "Activity of solid catalysts for biodiesel production: A review", Fuel Processing Technology, Vol. 90, pp. 770–777, 2009. [27] Macquarrie, D. Chorkendorff and JW Niemantsverdriet. "Concepts of modern catalysis and kinetics. Wiley–VCH, 2003, 469 pp; ISBN 3‐527‐30574‐2 (hardcover)", Applied Organometallic Chemistry, Vol. 19, pp. 696, 2005. [28] Wang, L. and Yang, J. "Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol", Fuel. Vol. 86, pp. 328–333, 2007. [29] Granados, M. L., Poves, M. D. Z., Alonso, D. M., Mariscal, R., Galisteo, F. C., Moreno-Tost, R., Santamaría, J. and Fierro, J. L. G., "Biodiesel from sunflower oil by using activated calcium oxide", Applied Catalysis B: Environmental, Vol. 73, pp. 317–326, 2007. [30] Sree, R., Babu, N. S., Prasad, P. S. S. and Lingaiah, N., "Transesterification of edible and non-edible oils over basic solid Mg/Zr catalysts", Fuel Processing Technology, Vol. 90, pp. 152–157, 2009. [31] Chen, W. K., Tseng, H. H., Wei, M. C., Su, E. C. and Chiu, I. C., "Transesterification of canola oil as biodiesel over Na/Zr-SBA-15 catalysts: Effect of zirconium content", International Journal of Hydrogen Energy, Vol. 39, pp. 19555–19562, 2014. [32] Tai, C. Y., Hsiao, B. Y. and Chiu, H. Y., "Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 237, pp. 105-111, 2004. [33] Ma, T., Huang, Y., Yang, J., He, J. and Zhao, L., "Preparation of spherical zirconia powder in microemulsion system and its densification behavior", Materials & Design, Vol. 25, pp. 515-519, 2004. [34] Kongwudthiti, S., Praserthdam, P., Silveston, P. and Inoue, M., "Influence of synthesis conditions on the preparation of zirconia powder by the glycothermal method", Ceramics International, Vol. 29, pp. 807-814, 2003. [35] Popova, M., Szegedi, Á., Lazarova, H., Dimitrov, M., Kalvachev, Y., Atanasova G., Ristić, A., Wilde, N. and Gläser, R., "Influence of the preparation method of sulfated zirconia nanoparticles for levulinic acid esterification", Reaction Kinetics, Mechanisms and Catalysis, Vol. 120, pp. 55-67, 2017. [36] Su, C., Li, J., He, D., Cheng, Z. and Zhu, Q., "Synthesis of isobutene from synthesis gas over nanosize zirconia catalysts", Applied Catalysis A: General, Vol. 202, pp. 81-89, 2000. [37] Mrowiec-Białon, J., Paja̧k, L., Jarzȩbski, A. B., Lachowski, A. I. and Malinowski, J. J., "Preparation effects on zirconia aerogel morphology", Journal Non-Crystalline Solids, Vol. 225, pp. 115-119, 1998. [38] Wang, J. A., Valenzuela, M. A., Salmones, J., Vázquez, A., García-Ruiz, A. and Bokhimi, X., "Comparative study of nanocrystalline zirconia prepared by precipitation and sol-gel methods", Catalysis Today, Vol. 68, pp. 21-30, 2001. [39] Kim, J. H., Suh, D. J., Park, T. J. and Kim, K. L., "Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts", Applied Catalysis A: General, Vol. 197, pp. 191-200, 2000. [40] Jitputti, J., Kitiyanan, B., Rangsunvigit, P., Bunyakiat, K., Attanatho, L. and Jenvanitpanjakul, P., "Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts", Chemical Engineering Journal, Vol. 116, pp. 61–66, 2006. [41] Dundich, V. O., Khromova, S. A., Ermakov, D. Y., Lebedev, M. Y., Novopashina, V. M., Sister, V. G., Yakimchuk, A. I. and Yakovlev, V. A., "Nickel catalysts for the hydrodeoxygenation of biodiesel", Kinetics and Catalysis. Vol. 51, pp. 704–709, 2010. [42] Sun, H., Ding, Y., Duan, J., Zhang, Q., Wang, Z., Lou, H. and Zheng, X., "Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst", Bioresource Technology. 2010. [43] Phan, A. N. and Phan, T. M. "Biodiesel production from waste cooking oils", Fuel. Vol. 87, pp. 3490–3496, 2008. [44] Ozawa, M., Kimura, M., Isogai, A., Matsumoto, S. and Miyoshi, N., "Catalyst for purification of exhaust gases", 1991. [45] Adamowska, M., Krztoń, A., Najbar, M., Camra, J., Djéga-Mariadassou, G. and Da-Costa, P., "Ceria-zirconia-supported rhodium catalyst for NOx reduction from coal combustion flue gases", Applied Catalysis B: Environmental, Vol. 90, pp. 535-544, 2009. [46] Tagliente, M. A. and Massaro, M., "Strain-driven (002) preferred orientation of ZnO nanoparticles in ion-implanted silica", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 266, pp. 1055-1061, 2008. [47] Bampenrat, A., Meeyoo, V., Kitiyanan, B., Rangsunvigit, P. and Rirksomboon, T., "Naphthalene steam reforming over Mn-doped CeO2-ZrO2 supported nickel catalysts", Applied Catalysis A: General, Vol. 373, pp. 154-159, 2010. [48] Ozawa, M., "Role of cerium–zirconium mixed oxides as catalysts for car pollution: A short review 1", Journal of Alloys and Compounds, Vol. 275, pp. 886–890,1998. [49] Afsharizadeh, M. and Mohsennia, M., "Catalytic synthesis of biodiesel from waste cooking oil and corn oil over zirconia‑based metal oxide nanocatalysts", Reaction Kinetics, Mechanisms and Catalysis, 2019. [50] Chen, C., Gao, J. and Yan, Y., "Observation of the type of hydrogen bonds in coal by FTIR", Energy & Fuels. Vol. 12, pp. 446–449, 1998. [51] Arora, A. K., Raj, M. P. S., Mandal, T., Christopher, J., Puri, S. K. and Gupta, A. A., "An Effective Heterogeneous Catalyst from Waste Material for the Biodiesel Production", Journal of Surface Science and Technology, Vol. 30, pp. 45–58, 2014. [52] Selishcheva, S. A., Babushkin, D. E. and Yakovlev, V. A., "Studies on the Direct Hydrocracking of Fatty Acid Triglycerides on Ni-Cu/CeO2-ZrO2 Catalyst", Chemistry for Sustainable Development, Vol. 19, pp. 181-186, 2011. [53] El-Kemary, M., Nagy, N. and El-Mehasseb, I., "Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose", Materials Science in Semiconductor Processing, Vol. 16, pp. 1747–1752, 2013. [54] Danmaliki, G. I. and Saleh, T. A., "Effects of bimetallic Ce/Fe nanoparticles on the desulfurization of thiophenes using activated carbon", Chemical Engineering Jouenal, Vol. 307, pp. 914–927, 2017. [55] Theivasanthi, T. and Alagar, M., "Chemical capping synthesis of nickel oxide nanoparticles and their characterizations studies", Vol. 2, pp. 134-138, 2012. [56] Niknahad, B., Mohsennia, M. and Eliassi, A., "Influence of preparation methods on the structure and catalytic performance of nanostructured La0.7Ba0.3Co0.3Ni0.7O3 for CO oxidation", Reaction Kinetics, Mechanisms and Catalysis, Vol. 117, pp. 537–550, 2016. [57] Thitsartarn, W., Kawi, S., "An active and stable CaO–CeO2 catalyst for transesterification of oil to biodiesel", Green Chemistry. Vol. 13, pp. 3423-3430, 2011. [58] Ngamcharussrivichai, C., Totarat, P. and Bunyakiat, K., "Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil", Applied Catalysis A: General,Vol. 341, pp. 77–85, 2008.