مکان‌یابی خطای بهبودیافته با به‌کارگیری نشانگرهای خطا و مدل احتمالاتی بار

نویسندگان

دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته

چکیده

امروزه هوشمندسازی شبکه‌های توزیع از موضوعات چالشی و جدید محسوب می‌شود. یکی از مشخصه‌های هوشمندسازی در این شبکه‌ها قابلیت مکان‌یابی سریع و دقیق خطا در آن‌هاست. این موضوع موجب کاهش بخشی از زمان خاموشی‌هایی می‌شود که گروه‌های تعمیرات صرف جست‌وجوی محل خطا به روش سنتی می‌کنند. اما مکان‌یابی خطا در شبکه‌های توزیع با توجه به ذات توپولوژیک آن‌ها (انشعابات متعدد، بارهای میانی، خطا در تخمین میزان بارها، نا همگن بودن خطوط و...) کار بسیار دشوار و متفاوت از شبکه‌های انتقال برق است. در این تحقیق، برای کاهش تعداد جواب‌های مکان‌یاب خطا از اطلاعات نشانگرهای خطا استفاده شده است. در این مقاله، برای مکان‌یابی خطا، روشی مبتنی بر جاروب پس‌رو پیش‌رو معرفی شده است. در این راستا با توجه به تخمینی بودن میزان بارهای موجود در شبکه، به‌طبع با پارامترهای دارای عدم قطعیت سروکار خواهیم داشت. به‌دلیل شرایط آب‌وهوایی تقریباً یکسان برای فیدرهای توزیع و رفتارهای گاه مشابه مشترکین، بین این پارامترها همبستگی نیز وجود خواهد داشت. لذا برای مدل‌سازی مسئله و به‌دست‌آوردن تأثیر پارامترهای احتمالاتی بر روی محل محاسبه‌شدۀ خطا از دو روش مرسوم مونت کارلو و تخمین دونقطه‌ای استفاده شده است. در نهایت، برای ارزیابی روش پیشنهادی از شبکۀ تست 11 باس، و شبکۀ واقعی 306 باسه فیدر شرف‌آباد در شهر کرمان استفاده شده است.

کلیدواژه‌ها


[1]  Abessi, A., Vahidinasab, V. and Ghazizadeh, M. S., "Distributed Reactive Power Control by Considering End-Consumers", Energy: Engineering & Managment, Vol. 5, No. 1, pp. 14-23, 2015.
[2]  Jalilian, a. and Alizadeh, M. R., "Improving Fault Ride-through Capability of Inverter-Based Distributed Generations Using Fault Current Limiter", Energy: Engineering & Managment, Vol. 5, No. 1, pp. 2-13, 2015.
[3]  Bahmanyar, A., Jamali, S., Estebsari, A. et al., "A Comparison Framework for Distribution System Outage and Fault Location Methods", Electric Power Systems Research, Vol. 145, pp. 19-34, 2017.
[4]  Jia, K., Yang, B., Dong, X. et al., "Sparse Voltage Measurement-Based Fault Location Using Intelligent Electronic Devices", IEEE Transactions on Smart Grid, Vol. 11, No. 1, pp. 48-60, 2019.
[5]  Sun, H., Yi, H., Fang, Z. et al., "Precise Fault Location in Distribution Networks Based on Optimal Monitor Allocation", IEEE Transactions on Power Delivery, 2019.
[6]  Thomas, D. W., Carvalho, R. J. and Pereira, E. T., "Fault Location in Distribution Systems Based on Traveling Wave", Vol. 2, p. 5, 2003.
[7]  Jia, Q., Dong, X. and Mirsaeidi, S., "A Traveling-Wave-Based Line Protection Strategy against Single-Line-to-Ground Faults in Active Distribution Networks", International Journal of Electrical Power & Energy Systems, Vol. 107, pp. 403-411, 2019.
[8]  Shi, S., Zhu, B., Lei, A. et al., "Fault Location for Radial Distribution Network Via Topology and Reclosure-Generating Traveling Waves", IEEE Transactions on Smart Grid, Vol. 10, No. 6, pp. 6404 - 6413, 2019.
[9]  Borghetti, A., Bosetti, M., Di Silvestro, M. et al., "Continuous-Wavelet Transform for Fault Location in Distribution Power Networks: Definition of Mother Wavelets Inferred from Fault Originated Transients", IEEE Transactions on Power Systems, Vol. 23, No. 2, pp. 380-388, 2008.
[10]         Magnago, F. H. and Abur, A., "Fault Location Using Wavelets", IEEE Transactions on Power Delivery, Vol. 13, No. 4, pp. 1475-1480, 1998.
[11]         Magnago, F. H. and Abur, A., "A New Fault Location Technique for Radial Distribution Systems Based on High Frequency Signals", IEEE Power Engineering Society Summer Meeting, pp. 426-431, 1999.
[12]         Magnago, F. H. and Abur, A., "A New Fault Location Technique for Radial Distribution Systems Based on High Frequency Signals", IEEE Power Engineering Society Summer Meeting, pp. 426-431, 1999.
[13]         Usman M. U., Ospina J. and Faruque M. O., "Fault Classification and Location Identification in a Smart Distribution Network Using Ann", IEEE Power & Energy Society General Meeting (PESGM), pp. 1-6, 2018.
[14]         Dashtdar, M., "Fault Location in Distribution Network Based on Fault Current Analysis Using Artificial Neural Network", Journal of Electrical & Computer Engineering, Vol. 1, pp. 18-32, 2018.
[15]         Das, R., Sachdev, M. and Sidhu, T., "A Fault Locator for Radial Subtransmission and Distribution Lines", Power Engineering Society Summer Meeting, pp. 443-448, 2000.
[16]         Das, S., Santoso, S., Gaikwad, A. et al., "Impedance-Based Fault Location in Transmission Networks: Theory and Application", IEEE Access, Vol. 2, pp. 537-557, 2014.
[17]         Takagi, T., Yamakoshi, Y., Yamaura, M. et al., "Development of a New Type Fault Locator Using the One-Terminal Voltage and Current Data", IEEE Transactions on Power apparatus and systems, Vol. PAS-101, No. 8, pp. 2892-2898, 1982.
[18]         Eriksson, L., Saha, M. M. and Rockefeller, G., "An Accurate Fault Locator with Compensation for Apparent Reactance in the Fault Resistance Resulting from Remore-End Infeed", IEEE Transactions on Power Apparatus and Systems, No. 2, pp. 423-436, 1985.
[19]         Zhu, J., Lubkeman, D. L. and Girgis, A. A., "Automated Fault Location and Diagnosis on Electric Power Distribution Feeders", IEEE Transactions on Power Delivery, Vol. 12, No. 2, pp. 801-809, 1997.
[20]         Choi, M.-S., Lee, S.-J., Lee, D.-S. et al., "A New Fault Location Algorithm Using Direct Circuit Analysis for Distribution Systems", IEEE Transactions on Power Delivery, Vol. 19, No. 1, pp. 35-41, 2004.
[21]         Senger, E. C., Manassero, G., Goldemberg, C. et al., "Automated Fault Location System for Primary Distribution Networks", IEEE Transactions on Power Delivery, Vol. 20, No. 2, pp. 1332-1340, 2005.
[22]         Salim, R. H., Resener, M., Filomena, A. D. et al., "Extended Fault-Location Formulation for Power Distribution Systems", IEEE transactions on power delivery, Vol. 24, No. 2, pp. 508-516, 2009.
[23]         Lotfifard, S., Kezunovic, M. and Mousavi, M. J., "A Systematic Approach for Ranking Distribution Systems Fault Location Algorithms and Eliminating False Estimates", IEEE Transactions on Power delivery, Vol. 28, No. 1, pp. 285-293, 2013.
[24]         De Almeida, M., Costa, F., Xavier-de-Souza, S. et al., "Optimal Placement of Faulted Circuit Indicators in Power Distribution Systems", Electric Power Systems Research, Vol. 81, No. 2, pp. 699-706, 2011.
[25]         Dzafic, I., Mohapatra, P. and Neisius, H., "Composite Fault Location for Distribution Management Systems", Conference Proceedings IPEC, pp. 795-800, 2010.
[26]         Dzafic, I. and Mohapatra, P., "Impedance Based Fault Location for Weakly Meshed Distribution Networks", ISGT, pp. 1-6, 2011.
[27]         Johns, A., Lai L., El-Hami, M. et al., "New Approach to Directional Fault Location for Overhead Power Distribution Feeders",  IEE Proceedings C- Generation, Transmission and Distribution, Vol. 138, No. 4, pp. 351-357, 1991.
[28]         Baldwin, T., Renovich, F. and Saunders, L. F., "Directional Ground-Fault Indicator for High-Resistance Grounded Systems", IEEE Transactions on industry applications, Vol. 39, No. 2, pp. 325-332, 2003.
[29]         Vukojevic, A., Frey, P. and Smith, M., "Making a Smart Grid Case: Fault Circuit Indicators", IEEE Power & Energy Society General Meeting, pp. 1-5, 2013.
[30]         Ho, C.-Y., Lee, T.-E. and Lin, C.-H., "Optimal Placement of Fault Indicators Using the Immune Algorithm", IEEE Transactions on Power Systems, Vol. 26, No. 1, pp. 38-45, 2011.
[31]         Usida, W. F., Coury, D. V., Flauzino, R. A. et al., "Efficient Placement of Fault Indicators in an Actual Distribution System Using Evolutionary Computing", IEEE Transactions on Power Systems, Vol. 27, No. 4, pp. 1841-1849, 2012.
[32]         Acosta, J. S., López, J. C. and Rider, M. J., "Optimal Multi-Scenario, Multi-Objective Allocation of Fault Indicators in Electrical Distribution Systems Using a Mixed-Integer Linear Programming Model", IEEE Transactions on Smart Grid, Vol. 1, No. 1, pp. 426-431, 2018.
[33]         Farajollahi, M., Fotuhi-Firuzabad, M. and Safdarian, A., "Simultaneous Placement of Fault Indicator and Sectionalizing Switch in Distribution Networks", IEEE Transactions on Smart Grid, Vol. 10, No. 2, pp. 2278-2287, 2018.
[34]         Dzafic, I., "Method and Device for Capturing a Fault in an Electrical Supply Grid," Google Patents, 2012.
[35]         Džafić, I., Jabr, R. A., Henselmeyer S. et al., "Fault Location in Distribution Networks through Graph Marking", IEEE Transactions on Smart Grid, Vol. 9, No. 2, pp. 1345-1353, 2016.
[36]         Lee, S.-J., Choi, M.-S., Kang, S.-H. et al., "An Intelligent and Efficient Fault Location and Diagnosis Scheme for Radial Distribution Systems", IEEE transactions on power delivery, Vol. 19, No. 2, pp. 524-532, 2004.
[37]         Salim, R. H., de Oliveira, K. R. C., Filomena, A. D. et al., "Hybrid Fault Diagnosis Scheme Implementation for Power Distribution Systems Automation", IEEE Transactions on Power Delivery, Vol. 23, No. 4, pp. 1846-1856, 2008.
[38]         Nouri, H. and Alamuti, M. M., "Comprehensive Distribution Network Fault Location Using the Distributed Parameter Model", IEEE Transactions on Power Delivery, Vol. 26, No. 4, pp. 2154-2162, 2011.
[39]         Gabr, M. A., Ibrahim, D. K., Ahmed, E. S. et al., "A New Impedance-Based Fault Location Scheme for Overhead Unbalanced Radial Distribution Networks", Electric Power Systems Research, Vol. 142, No.1, pp. 153-162, 2017.
[40]         Srinivasan, K. and Jacques, A. S.-. "A New Fault Location Algorithm for Radial Transmission Lines with Loads", IEEE Transactions on Power Delivery, Vol. 4, No. 3, pp. 1676-1682, 1989.
[41]         PowerFactory, D., "Digsilent Powerfactory 15 User Manual", DIgSILENT GmbH, May-2014, 2013.
[42]         Aien, M., Khajeh, M. G., Rashidinejad, M. et al., "Probabilistic Power Flow of Correlated Hybrid Wind-Photovoltaic Power Systems", IET Renewable Power Generation, Vol. 8, No. 6, pp. 649-658, 2014.