[1] Abessi, A., Vahidinasab, V. and Ghazizadeh, M. S., "Distributed Reactive Power Control by Considering End-Consumers", Energy: Engineering & Managment, Vol. 5, No. 1, pp. 14-23, 2015.
[2] Jalilian, a. and Alizadeh, M. R., "Improving Fault Ride-through Capability of Inverter-Based Distributed Generations Using Fault Current Limiter", Energy: Engineering & Managment, Vol. 5, No. 1, pp. 2-13, 2015.
[3] Bahmanyar, A., Jamali, S., Estebsari, A. et al., "A Comparison Framework for Distribution System Outage and Fault Location Methods", Electric Power Systems Research, Vol. 145, pp. 19-34, 2017.
[4] Jia, K., Yang, B., Dong, X. et al., "Sparse Voltage Measurement-Based Fault Location Using Intelligent Electronic Devices", IEEE Transactions on Smart Grid, Vol. 11, No. 1, pp. 48-60, 2019.
[5] Sun, H., Yi, H., Fang, Z. et al., "Precise Fault Location in Distribution Networks Based on Optimal Monitor Allocation", IEEE Transactions on Power Delivery, 2019.
[6] Thomas, D. W., Carvalho, R. J. and Pereira, E. T., "Fault Location in Distribution Systems Based on Traveling Wave", Vol. 2, p. 5, 2003.
[7] Jia, Q., Dong, X. and Mirsaeidi, S., "A Traveling-Wave-Based Line Protection Strategy against Single-Line-to-Ground Faults in Active Distribution Networks", International Journal of Electrical Power & Energy Systems, Vol. 107, pp. 403-411, 2019.
[8] Shi, S., Zhu, B., Lei, A. et al., "Fault Location for Radial Distribution Network Via Topology and Reclosure-Generating Traveling Waves", IEEE Transactions on Smart Grid, Vol. 10, No. 6, pp. 6404 - 6413, 2019.
[9] Borghetti, A., Bosetti, M., Di Silvestro, M. et al., "Continuous-Wavelet Transform for Fault Location in Distribution Power Networks: Definition of Mother Wavelets Inferred from Fault Originated Transients", IEEE Transactions on Power Systems, Vol. 23, No. 2, pp. 380-388, 2008.
[10] Magnago, F. H. and Abur, A., "Fault Location Using Wavelets", IEEE Transactions on Power Delivery, Vol. 13, No. 4, pp. 1475-1480, 1998.
[11] Magnago, F. H. and Abur, A., "A New Fault Location Technique for Radial Distribution Systems Based on High Frequency Signals", IEEE Power Engineering Society Summer Meeting, pp. 426-431, 1999.
[12] Magnago, F. H. and Abur, A., "A New Fault Location Technique for Radial Distribution Systems Based on High Frequency Signals", IEEE Power Engineering Society Summer Meeting, pp. 426-431, 1999.
[13] Usman M. U., Ospina J. and Faruque M. O., "Fault Classification and Location Identification in a Smart Distribution Network Using Ann", IEEE Power & Energy Society General Meeting (PESGM), pp. 1-6, 2018.
[14] Dashtdar, M., "Fault Location in Distribution Network Based on Fault Current Analysis Using Artificial Neural Network", Journal of Electrical & Computer Engineering, Vol. 1, pp. 18-32, 2018.
[15] Das, R., Sachdev, M. and Sidhu, T., "A Fault Locator for Radial Subtransmission and Distribution Lines", Power Engineering Society Summer Meeting, pp. 443-448, 2000.
[16] Das, S., Santoso, S., Gaikwad, A. et al., "Impedance-Based Fault Location in Transmission Networks: Theory and Application", IEEE Access, Vol. 2, pp. 537-557, 2014.
[17] Takagi, T., Yamakoshi, Y., Yamaura, M. et al., "Development of a New Type Fault Locator Using the One-Terminal Voltage and Current Data", IEEE Transactions on Power apparatus and systems, Vol. PAS-101, No. 8, pp. 2892-2898, 1982.
[18] Eriksson, L., Saha, M. M. and Rockefeller, G., "An Accurate Fault Locator with Compensation for Apparent Reactance in the Fault Resistance Resulting from Remore-End Infeed", IEEE Transactions on Power Apparatus and Systems, No. 2, pp. 423-436, 1985.
[19] Zhu, J., Lubkeman, D. L. and Girgis, A. A., "Automated Fault Location and Diagnosis on Electric Power Distribution Feeders", IEEE Transactions on Power Delivery, Vol. 12, No. 2, pp. 801-809, 1997.
[20] Choi, M.-S., Lee, S.-J., Lee, D.-S. et al., "A New Fault Location Algorithm Using Direct Circuit Analysis for Distribution Systems", IEEE Transactions on Power Delivery, Vol. 19, No. 1, pp. 35-41, 2004.
[21] Senger, E. C., Manassero, G., Goldemberg, C. et al., "Automated Fault Location System for Primary Distribution Networks", IEEE Transactions on Power Delivery, Vol. 20, No. 2, pp. 1332-1340, 2005.
[22] Salim, R. H., Resener, M., Filomena, A. D. et al., "Extended Fault-Location Formulation for Power Distribution Systems", IEEE transactions on power delivery, Vol. 24, No. 2, pp. 508-516, 2009.
[23] Lotfifard, S., Kezunovic, M. and Mousavi, M. J., "A Systematic Approach for Ranking Distribution Systems Fault Location Algorithms and Eliminating False Estimates", IEEE Transactions on Power delivery, Vol. 28, No. 1, pp. 285-293, 2013.
[24] De Almeida, M., Costa, F., Xavier-de-Souza, S. et al., "Optimal Placement of Faulted Circuit Indicators in Power Distribution Systems", Electric Power Systems Research, Vol. 81, No. 2, pp. 699-706, 2011.
[25] Dzafic, I., Mohapatra, P. and Neisius, H., "Composite Fault Location for Distribution Management Systems", Conference Proceedings IPEC, pp. 795-800, 2010.
[26] Dzafic, I. and Mohapatra, P., "Impedance Based Fault Location for Weakly Meshed Distribution Networks", ISGT, pp. 1-6, 2011.
[27] Johns, A., Lai L., El-Hami, M. et al., "New Approach to Directional Fault Location for Overhead Power Distribution Feeders", IEE Proceedings C- Generation, Transmission and Distribution, Vol. 138, No. 4, pp. 351-357, 1991.
[28] Baldwin, T., Renovich, F. and Saunders, L. F., "Directional Ground-Fault Indicator for High-Resistance Grounded Systems", IEEE Transactions on industry applications, Vol. 39, No. 2, pp. 325-332, 2003.
[29] Vukojevic, A., Frey, P. and Smith, M., "Making a Smart Grid Case: Fault Circuit Indicators", IEEE Power & Energy Society General Meeting, pp. 1-5, 2013.
[30] Ho, C.-Y., Lee, T.-E. and Lin, C.-H., "Optimal Placement of Fault Indicators Using the Immune Algorithm", IEEE Transactions on Power Systems, Vol. 26, No. 1, pp. 38-45, 2011.
[31] Usida, W. F., Coury, D. V., Flauzino, R. A. et al., "Efficient Placement of Fault Indicators in an Actual Distribution System Using Evolutionary Computing", IEEE Transactions on Power Systems, Vol. 27, No. 4, pp. 1841-1849, 2012.
[32] Acosta, J. S., López, J. C. and Rider, M. J., "Optimal Multi-Scenario, Multi-Objective Allocation of Fault Indicators in Electrical Distribution Systems Using a Mixed-Integer Linear Programming Model", IEEE Transactions on Smart Grid, Vol. 1, No. 1, pp. 426-431, 2018.
[33] Farajollahi, M., Fotuhi-Firuzabad, M. and Safdarian, A., "Simultaneous Placement of Fault Indicator and Sectionalizing Switch in Distribution Networks", IEEE Transactions on Smart Grid, Vol. 10, No. 2, pp. 2278-2287, 2018.
[34] Dzafic, I., "Method and Device for Capturing a Fault in an Electrical Supply Grid," Google Patents, 2012.
[35] Džafić, I., Jabr, R. A., Henselmeyer S. et al., "Fault Location in Distribution Networks through Graph Marking", IEEE Transactions on Smart Grid, Vol. 9, No. 2, pp. 1345-1353, 2016.
[36] Lee, S.-J., Choi, M.-S., Kang, S.-H. et al., "An Intelligent and Efficient Fault Location and Diagnosis Scheme for Radial Distribution Systems", IEEE transactions on power delivery, Vol. 19, No. 2, pp. 524-532, 2004.
[37] Salim, R. H., de Oliveira, K. R. C., Filomena, A. D. et al., "Hybrid Fault Diagnosis Scheme Implementation for Power Distribution Systems Automation", IEEE Transactions on Power Delivery, Vol. 23, No. 4, pp. 1846-1856, 2008.
[38] Nouri, H. and Alamuti, M. M., "Comprehensive Distribution Network Fault Location Using the Distributed Parameter Model", IEEE Transactions on Power Delivery, Vol. 26, No. 4, pp. 2154-2162, 2011.
[39] Gabr, M. A., Ibrahim, D. K., Ahmed, E. S. et al., "A New Impedance-Based Fault Location Scheme for Overhead Unbalanced Radial Distribution Networks", Electric Power Systems Research, Vol. 142, No.1, pp. 153-162, 2017.
[40] Srinivasan, K. and Jacques, A. S.-. "A New Fault Location Algorithm for Radial Transmission Lines with Loads", IEEE Transactions on Power Delivery, Vol. 4, No. 3, pp. 1676-1682, 1989.
[41] PowerFactory, D., "Digsilent Powerfactory 15 User Manual", DIgSILENT GmbH, May-2014, 2013.
[42] Aien, M., Khajeh, M. G., Rashidinejad, M. et al., "Probabilistic Power Flow of Correlated Hybrid Wind-Photovoltaic Power Systems", IET Renewable Power Generation, Vol. 8, No. 6, pp. 649-658, 2014.