یک مدل بهینه‌سازی چندهدفۀ فازی برای مدیریت تولید و مصرف در شبکه‌های هوشمند کوچک انرژی

نویسندگان

1 دکتری مدیریت تولید و عملیات، دانشکده مدیریت، دانشگاه تهران، پردیس کیش، تهران، ایران

2 گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه تهران، تهران، ایران

3 گروه مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران

چکیده

انرژی الکتریکی یکی از مهم‌ترین حامل‌های انرژی مورد استفاده در ساختمان‌هاست. با معرفی شبکه‌های هوشمند (SG) انرژی و در مقیاس کوچک‌تر شبکه‌های هوشمند کوچک (MSG) انرژی در کنار هوشمندسازی ساختمان‌ها، بستر مناسبی برای برنامه‌ریزی بهینه تولید و مصرف انرژی الکتریکی فراهم شده است. در این مقاله، یک MSG شامل منابع تجدیدپذیر، دیزل ژنراتور و باتری سلولی با قابلیت خرید و فروش توان الکتریکی با SG مدل شده است که در سمت مصرف‌کننده به ساختمان هوشمند شامل بارهای روشنایی، دمایی و تهویۀ مطبوع متصل است. برای پیاده‌سازی سیستم مدیریت هوشمند ساختمان و همچنین در MSG برای مدیریت منابع تولید انرژی و خرید و فروش برق با SG از کنترلرهای فازی استفاده شده است. متغیرهای تصمیم‌گیری، قوانین کنترلرهای فازی هستند که توسط الگوریتم بهینه‌سازی چندهدفه (NSGAII) با در نظر گرفتن پنج تابع هدف مختلف بهینه شده‌اند. نتایج به‌دست‌آمده نشان‌دهندۀ قابلیت عملکرد بهتر کنترلرهای فازی در مقایسه با روش‌هایی است که مستقیماً توان تخصیص داده شده به بارهای ساختمان را به‌عنوان متغیر تصمیم‌گیری مورد استفاده قرار داده‌اند.

کلیدواژه‌ها


[1] Pachauri, S., Ruijven, B.J.V., Nagai, Y. and Riahi, K., "Pathways to Achieve Universal Household Access to Modern Energy by 2030", Environmental Research Letters, Vol. 8, No. 2, pp. 1-7, 2013. [2] Gellings, C.W., "The Smart Grid: Enabling Energy Efficiency and Demand Response", The Fairmont Press, Inc, 2009. [3] Mogel, W.A., "Smart Power: Climate Change, the Smart Grid and the Future of Electric Utilities", Energy Law Journal, Vol. 31, No. 1, p. 183, 2010. [4] Gharavi, H. and Ghafurian, R., "Smart Grid: The Electric Energy System of the Future", Vol. 99, No. 6, 2011. [5] Zareipour, H., Bhattacharya, K. and Canizares, C., "Distributed Generation: Current Status and Challenges", Annual North American Power Symposium. 2004. [6] Dussart, M., , Lauwers, P., Magnus, S. and Laperches, Y., "Connection Requirements for Dispersed Generation: Evolutions of Existing Requirements and Need for Further Standardization", 16th International Conference and Exhibition on Electricity Distribution, 2001. [7] Wang, C. and Li, P., "Development and Challenges of Distributed Generation, the Micro-Grid and Smart Distribution System", Automation of electric power systems, 2010. [8] Hafez, O. and Bhattacharya, K., "Optimal Planning and Design of a Renewable Energy Based Supply System for Microgrids", Renewable Energy, Vol. 45, pp. 7-15, 2012. [9] Osmani, A. and Zhang, J., "Optimal Grid Design and Logistic Planning for Wind and Biomass Based Renewable Electricity Supply Chains Under Uncertainties", Energy, Vol. 70, pp. 514-528, 2014. [10] Paris, B. and Eynard, J., "Hybrid PID-Fuzzy Control Scheme for Managing Energy Resources in Buildings", Applied Soft Computing, Vol. 11, No. 8, pp 5068-5080, 2011. [11] Stimmel, C.L., "Building Smart Cities: Analytics, ICT, and Design Thinking", Auerbach Publications, 2015. [12] Tenfen, D. and Finardi, E.C., "A Mixed Integer Linear Programming Model for the Energy Management Problem of Microgrids", Electric Power Systems Research, Vol. 122, pp. 19-28, 2015. [13] Amini, M. and Frye, J., "Smart Residential Energy Scheduling Utilizing Two Stage Mixed Integer Linear Programming", North American Power Symposium, 2015. [14] Zhu, Z. and Tang, J., "An Integer Linear Programming Based Optimization for Home Demand-Side Management in Smart Grid", PES Innovative Smart Grid Technologies, 2012. [15] Oliveira, G.D., Jacomino., M., Ha, D. and Ploix, S., "Optimal Power Control for Smart Homes", IFAC Proceedings, Vol. 44, No. 1, pp. 9579-9586, 2011. [16] Parisio, A. and Glielmo, L., "A Mixed Integer Linear Formulation for Microgrid Economic Scheduling", International Conference on Smart Grid Communications, 2011. [17] Kriett, P.O. and Salani, M., "Optimal Control of a Residential Microgrid", Energy, Vol. 42, No. 1, pp. 321-330, 2012. [18] Huber, M., Sänger, F. and Hamacher, T., "Coordinating Smart Homes in Microgrids: A Quantification of Benefits", PES ISGT Europe, 2013. [19] Dehnad, A. and Shakouri G. H., "A Novel Model of Intelligent Electrical Load Management by Goal Programming for Smart Houses, Respecting Consumer Preferences", Energy and Power Engineering, Vol. 5, No. 10, pp. 622-627, 2013. [20] Zhang, D., Shah, N. and Papageorgiou, L.G., "Efficient Energy Consumption and Operation Management in a Smart Building with Microgrid", Energy Conversion and Management, Vol. 74, pp. 209-222, 2013. [21] Zhang, D., Liu, S. and Papageorgiou, L.G., "Fair Cost Distribution Among Smart Homes with Microgrid", Energy Conversion and Management, Vol. 80, pp. 498-508, 2014. [22] Zakariazadeh, A., Jadid, S. and Siano, P., "Smart Microgrid Energy and Reserve Scheduling With Demand Response Using Stochastic Optimization", International Journal of Electrical Power & Energy Systems, Vol. 63, pp. 523-533, 2014. [23] Shakouri G., H. and Kazemi, K., "Multi-Objective Cost-Load Optimization for Demand Side Management of a Residential Area in Smart Grids", Sustainable Cities and Society, Vol. 32, 2018. [24] Ganguly, S., Sahoo, N. and Das, D., "Multi-objective Planning of Electrical Distribution Systems Using Dynamic Programming", International Journal of Electrical Power & Energy Systems, Vol. 46, pp. 65-78, 2013. [25] Xu, Y., Zhang, W. and Liu, W., "Distributed Dynamic Programming-Based Approach for Economic Dispatch in Smart Grids", IEEE Transactions on Industrial Informatics, Vol. 11, No 1, pp. 166-175, 2014. [26] Tang, Y., Hea, H., Ni, Z., Wen, J. and Sui, X., "Reactive Power Control of Grid-Connected Wind Farm Based on Adaptive Dynamic Programming", Neurocomputing, Vol. 125, pp. 125-133, 2014. [27] Nguyen, M.Y., Yoon, Y.T. and Choi, N.H., "Dynamic Programming Formulation of Micro-Grid Operation with Heat and Electricity Constraints", Transmission & Distribution Conference & Exposition: Asia and Pacific. 2009. [28] Mitra, J., Patra, S.B. and Ranade. S.J., "A Dynamic Programming Based Method for Developing Optimal Microgrid Architectures", 15th Power Systems Computational Conf, 2005. [29] Nguyen, T.A. and Crow, M.L., "Optimization in Energy and Power Management for Renewable-Diesel Microgrids Using Dynamic Programming Algorithm", International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, 2012. [30] Pooranian, Z. and Nikmehr, N., "Economical and Environmental Operation of Smart Networked Microgrids Under Uncertainties Using NSGA-II", 24th International Conference on Software, Telecommunications and Computer Networks, 2016. [31] Motevasel, M., Seifi, A.R. and Niknam, T., "Multi Objective Energy Management of CHP (Combined Heat and Power)-Based Micro-Grid", Energy, Vol. 51, pp. 123-136, 2013. [32] Yang, R. and Wang, L., "Multi-Objective Optimization for Decision-Making of Energy and Comfort Management in Building Automation and Control", Sustainable Cities and Society, Vol. 2, No 1, pp. 1-7, 2012. [33] Buayai, K., Ongsakul, W. and Mithulananthan, N., "Multi‐Objective Micro‐Grid Planning by NSGA‐II in Primary Distribution System", European Transactions on Electrical Power, Vol. 22, No 2, pp. 170-187, 2012. [34] Harkouss, F., Fardoun, F. and Biwole, P.H., "Multi-Objective Decision Making Optimization of a Residential Net Zero Energy Building in Cold Climate", Sensors Networks Smart and Emerging Technologies, 2017. [35] Safaei, A., Freire, F. and Antunes, C.H., "A Life Cycle Multi-Objective Economic and Environmental Assessment of Distributed Generation in Buildings", Energy conversion and management, Vol. 97, pp. 420-427, 2015. [36] Ma, L., "Multi-Party Energy Management for Smart Building Cluster with PV Systems Using Automatic Demand Response", Energy and Buildings, Vol. 121, pp. 11-21, 2016. [37] Ferrari, L. and et al., "Development of an Optimization Algorithm for the Energy Management of an Industrial Smart User", Applied energy, Vol. 208, pp. 1468-1486, 2017. [38] Wang Z, Yang R. and Wang, L., "Intelligent Multi-Agent Control for Integrated Building and Micro-Grid System", PES innovative smart grid technologies, 2011. [39] Sedighizadeh, M. and Esmaili, M., "Stochastic Multi-Objective Economic-Environmental Energy and Reserve Scheduling of Microgrids Considering Battery Energy Storage System", International Journal of Electrical Power & Energy Systems, Vol. 106, pp. 1-16, 2019. [40] Wolsink, M., "The Research Agenda on Social Acceptance of Distributed Generation in Smart Grids: Renewable As Common Pool Resources", Renewable and Sustainable Energy Reviews, Vol. 16, No. 1, pp. 822-835, 2012.