مروری بر مطالعات انجام‌شده بر روی دستگاه آب‌شیرین‌کن خازنی و مطالعۀ تجربی امکان‌سنجی اتصال آن به انرژی خورشیدی

نویسندگان

1 دانشگاه صنعتی اصفهان

2 انیستیتو پژوهش انرژی کره

چکیده

تهیۀ آب شیرین یکی از معضلات کشورهای خاورمیانه از جمله ایران است. تکنولوژی شیرین‌سازی آب یکی از موضوعات مورد توجه دانشمندان در دهۀ اخیر است. در این میان، آب‌شیرین‌کن‌های خازنی با رشد فزاینده‌ای از مطالعات روبه‌رو هستند. مصرف بهینۀ انرژی، صرفۀ اقتصادی و فضای اشغالی کمتر، مطالعه بر روی این دستگاه را اجتناب‌ناپذیر می‌کند. در سال‌های اخیر در جهان، مطالعات تجربی فراوانی بر روی این دستگاه انجام شده است. زیرمدل‌هایی نیز برای مدل‌سازی جذب یون بر اساس تئوری لایۀ الکتریکی مضاعف، تعریف و توسعه یافته‌اند. اما در کشور ایران، به‌رغم بحران آب، مطالعۀ اساسی بر روی این دستگاه انجام نشده است. در مقالۀ حاضر در بخش اول، دستگاه آب‌شیرین‌کن خازنی معرفی شده و مطالعات در این زمینه مرور می‌شود. در بخش دوم، نتایج مطالعه‌ای تجربی با هدف بررسی امکان کوپل دستگاه آب‌شیرین‌کن خازنی الکترود جاری (FCDI) با انرژی خورشیدی ارائه می‌شود. به این منظور ابتدا سل FCDI مورد مطالعه معرفی می‌شود. از پنل‌های‌ خورشیدی به‌صورت مستقیم برای تأمین انرژی مصرفی جذب یون استفاده می‌شود. نتایج نشان می‌دهد که دستگاه با اتصال پنل خورشیدی 2 وات، آب دریا را در یک مرحله 50 درصد شیرین می‌کند. در آزمون دیگر برای رسیدن به آب قابل شرب از پنل خورشیدی 75/0 وات استفاده ‌شد و آب شور خروجی از مرحلۀ قبل در یک سیکل بسته با گذشت 1 ساعت به آب قابل شرب تبدیل ‌شد.  

کلیدواژه‌ها


[1] Karagiannis, I. C. and Soldatos, P. G., "Water desalination cost literature: review and assessment", Desalination Vol. 223, pp. 448–456, 2008. [2] Tiwari G. N. and Tiwari A. K., Solar distillation practice for water desalination systems, Anshan, California, 2008. [3] http://porcesh.ir/27179/ last visited on 03/10/2017. [4] Sharqawy, M., "Thermophysical properties of seawater: A review of existing correlations and data", Desalination and Water Treatment, Vol. 16, No. 10, pp. 354–380, 2010. [5] گرجیان، شیوا، ساخت و ارزیابی دستگاه نمک‌زدایی سهموی خورشیدی با کانون نقطه‌ای، رساله دکتری، دانشگاه تربیت مدرس، تهران، 1392. [6] Wikipedia. Saline water. Available at: http://en.wikipedia.org/wiki/Saline_water, last visited on 08/20/2016, 2013. [7] Darwish, M. A. and Al-Najem, N. M., "Energy consumption by multi-stage flash and reverse osmosis desalters", Applied Thermal Engineering, Vol. 20, pp. 399-416, 2000. [8] El-Dessouky, H., Ettouney, H., Al-Fulaij, H. and Mandani, F., "Multistage flash desalination combined with thermal vapor compression", Chemical Engineering and Processing, Vol. 39, pp. 343-356, 2000. [9] Al-Shammiri, M. and Safar, M., "Multi-effect distillation plants: state of the art", Desalination, Vol. 126, pp. 45-59, 1999. [10] Ettouney, H., "Visual basic computer package for thermal and membrane desalination processes", Desalination, Vol. 165, pp. 393-408, 2004. [11] Mandani, F., Ettouney, H., El-Dessouky, H. and Li, B., "H2O absorption heat pump for single-effect evaporation desalination process", Desalination, Vol. 128, pp. 161-76. 2000. [12] Tleimat, M. W., Freezing methods. Principles of Desalination, Part B, 2nd Ed., K S Spiegler and A D Laird, New York: Academia Press. pp. 360-400, 1980. [13] Parekh, S., Farid, M. M., Selman, J. R. and Al-Hallaj, S., "Solar desalination with a humidification-dehumidification technique—a comprehensive technical review", Desalination, Vol. 160, No. 2, pp. 167–186, 2004. [14] Lindblom J., "Solar thermal technologies for seawater desalination: state of the art, in solar energy", Danmarks Tekniske Universitet, Lyngby, pp. 93–108, 2003. [15] Bhardwaj, R., ten Kortenaar, M. V. and Mudde, R. F., "Maximized production of water by increasing area of condensation surface for solar distillation", Appl. Energy Vol. 154, pp. 480–490, 2015. [16] ﺍﺳﻤﺎﻋﻴﻠﻲ، ﻋﻠﻴﺮﺿﺎ، ﺷﻜﻴﺐ، ﺳﻴﺪ ﺍﺣﺴﺎﻥ، ﻋﻤﻴﺪﭘﻮﺭ، ﻣﺠﻴﺪ، «ﺗﺤﻠﻴﻞ ﺍﻧﺮژﻱ ﻭ ﺍﮔﺰﺭژﻱ ﻛﻮﭘﻠﻴﻨﮓ ﻧﻴﺮﻭﮔﺎﻩ ﺳﻴﻜﻞ ﺗﺮﻛﻴﺒﻲ ﻭ ﺁﺏ‌ﺷﻴﺮﻳﻦﻛﻦ ﺗﺒﺨﻴﺮﻱ ﭼﻨﺪﻣﺮﺣﻠﻪﺍﻱ»، نشریه مهندسی و مدیریت انرژی، دوره دوم، شماره اول، صفحه 40-47، 1391. [17] جعفریان دهکردی، علی، عظیمی باویل علیایی، سعید، بهره‌مند جوی، مجتبی، «تحلیل ترمواکونومیک تولید همزمان آب و توان از طریق نمک‌زدایی حرارتی در کنار چرخۀ ترکیبی پس‌فشاری»، دوره سوم، شماره دوم، صفحه 36-43، 1392. [18] امام دوست، نازیلا، کوهی کمالی، رامین، توفیق، علی اصغر، پالیزدار یحیی، «تعیین نقطۀ بهینه ترکیب آب‌شیرین‌کن، چند مرحله‌ای تبخیری با نیروگاه سیکل ترکیبی»، دوره چهارم، شماره دوم، صفحه 52-63، 1393. [19] عباسپور، قادر، غائبی، هادی، «ارزیابی عملکرد تلفیق آب‌شیرین‌کن چند اثرۀ تقطیری با تراکم بخار (MED -TVC) در یک سیستم تولید همزمان برق، حرارت و سرما»، دوره هفتم، شمارۀ ۲، صفحه 62-77، 1396. [20] Van der Bruggen B., "Desalination by distillation and by reverse osmosis — trends towards the future”, Membrane Technology, Vol. 2, pp. 6-9, 2003. [21] Wang, Xiao-L., Gong, Y. and Yu, Li-X., "Process simulation of desalination by electrodialysis of an aqueous solution containing a neutral solute", Desalination, Vol. 172, pp. 157-172, 2005. [22] Suss, M. E., Porada, S., Sun, X., Biesheuvel, P. M., Yoon, J. and Presser, V., "Water desalination via capacitive deionization: what is it and what can we expect from it?", Energy Environ. Sci., Vol. 8, pp. 2296, 2015. [23] Porada, S., Zhao, R., Van der Wal, A., Presser, V. and Biesheuvel, P. M., "Review on the science and technology of water desalination by capacitive deionization", Prog. In Mater. Sci., Vol. 58, pp. 1388–1442, 2013. [24] Subramani, A., et al., "Energy minimization strategies and renewable energy utilization for desalination: A review", Water Research, Vol. 45, No. 5, pp. 1907-1920, 2011. [25] Anderson, M., Cudero, A. L., Palma, J., "Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?", Electrochim Acta, Vol. 55, pp. 3845-56, 2010. [26] Blair, J. W. and Murphy, GW., "Saline water conversion", Adv. Chem. Ser., Vol. 27, pp. 206-23, 1960. [27] Arnold, B. B. and Murphy, G. W., "Studies on electrochemistry of carbon and chemically modified carbon surfaces", J. Phys. Chem., Vol. 65, pp. 135-8, 1961. [28] Wood, E. N., Tucker, J. H., Papastamataki, A., Caudle, D., Hock, R. and Murphy, G. W., "Electrochemical demineralization of water with carbon electrodes", Washington D.C.: U. S. Dept. of the Interior, 1965. [29] Evans, S. and Hamilton W. S., "The mechanism of demineralization at carbon electrodes", J. Electro chem Soc, Vol. 113, pp. 1314-9, 1966. [30] Murphy, G. W. and Caudle, D., "Mathematical theory of electrochemical demineralization in flowing systems", Electrochim Acta, Vol. 12, pp. 1655-64, 1967. [31] Reid, G. W., Townsend, F. M. and Stevens, A. M., "Filed operation of a 20 gallons per day pilot plant unit for electrochemical desalination of brackish water", Washington: U.S. Dept. of the Interior, 1968. [32] Murphy, G. W., Cooper, J. L. and Hunter J. A., "Activated carbon used as electrodes in electrochemical demineralization of saline water", Research and progress report No. 399, Washington: U.S. Dept. of the Interior, 1969. [33] Evans, S., Accomazzo, M. A. and Accomazzo, J. E., "Electro chemically controlled ion exchange", J. Electrochem Soc, Vol. 116, pp. 307- 9, 1969. [34] Accomazzo, M. A. and Evans, S., "Electrochemically controlled ion exchange", J. Electrochem Soc., Vol. 116, pp. 309-11, 1969. [35] Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W. and Poco, J. F., "The use of capacitive deionization with carbon aerogel electrodes to remove in organic contaminants from water", In :Low Level Waste Conference, Orlando, 1995. [36] Johnson, A. M., Venolia, A. W., Wilbourne, R. G., Newman, J., Wong, C. M., Gilliam, W. S. and et al., "The electro sorb process for desalting water", Research and progress report No. 516, Washington: U.S. Dept. of the Interior, 1970. [37] Johnson, A. M. and Newman, J., "Desalting by means of porous carbon electrodes", J. Electrochem Soc, Vol. 118, pp. 510-7, 1971. [38] Soffer, A. and Folman, M., "The electrical double layer of high surface porous carbon electrode", J. Electroanal Chem Interfacial Electrochem, Vol. 38, pp. 25-43, 1972. [39] Oren, Y. and Soffer, A., "Electrochemical parametric pumping", J. Electrochem Soc, Vol. 125, pp. 869-75, 1978. [40] Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W. and Poco, J. F., "Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes", J. Electrochem Soc, Vol. 143, pp. 159-69, 1996. [41] Farmer, J. C., Bahowick, S. M., Harrar J. E., Fix D. V., Martinelli, R. E., Vu, A. K. and et al., "Electro sorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water", Energy Fuels, Vol. 11, pp. 337-47, 1997. [42] Frackowiak, E., Jurewicz, K., Szostak, K. and Béguin, F., "Nanotubular materials as electrodes for supercapacitors", Fuel Processing Technology, Vol. 77, No. 1, pp. 213-219, 2002. [43] Wang, X. Z., Li, M. G., Chen, Y. W., Cheng, R. M., Huang, S. M., Pan, L. K., and Sun, Z., "lectrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes", APPLIED PHYSICS LETTERS, Vol. 89, pp. 053127, 2006. [44] Li, H., Gao, Y., Pan, L., Zhang, Y., Chen, Y. and Sun, Z., "Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes", water research, Vol. 42, pp. 4923–4928, 2008. [45] Oh, H. J., Lee, J. H., Ahn, H. J. nd aChi, C. S., "Nanoporous activated carbon cloth for capacitive deionization of aqueous solution", Thin Solid Films, Vol. 515, No. 1, pp. 220-225, 2006. [46] Lee, J. B., Park, K. K., Eum, H. M. and Lee, C. W., "Desalination of a thermal power plant wastewater by membrane capacitive deionization", Desalination, Vol. 196, pp. 125–134, 2006. [47] Suss, M. E., Baumann, T. F., Bourcier, W. L., Spadaccini, C. M., Rose, K. A., Santiago, J. G. and Stadermann, M., "Capacitive desalination with flow-through electrodes", Energy & Environmental Science, Vol. 5, No. 11, pp. 9511-9519, 2012. [48] Suss, M. E., Baumann, T. F., Worsley, M. A., Rose, K. A., Jaramillo, T. F., Stadermann, M. and Santiago, J. G., "Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity", Journal of Power Sources, Vol. 241, pp. 266-273, 2013. [49] Myint, M. T. Z. and Dutta, J., "Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach", Desalination, Vol. 305, pp. 24–30, 2012. [50] Myint, M. T. Z., Al-Harthi, S. H. and Dutta, J., "Brackish water desalination by capacitive deionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes", Desalination, Vol. 344, pp. 236–242, 2014. [51] Laxman, K., Myint, M. T. Z., Al Abri, M., Sathe, P., Dobretsov, S. and Dutta, J., "Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes", Desalination, Vol. 362, pp. 126–132, 2015. [52] Laxman, K., Myint, M. T. Z., Khan, R., Pervez, T. and Dutta, J., "Effect of a semiconductor dielectric coating on the salt adsorption capacity of a porous electrode in a capacitive deionization cell", Electrochimica Acta, Vol. 166, pp. 329–337, 2015. [53] Laxman, K., Myint, M. T. Z., Bourdoucen, H., and Dutta, J., "Enhancement in ion adsorption rate and desalination efficiency in a capacitive deionization cell through improved electric field distribution using electrodes composed of activated carbon cloth coated with zinc oxide nanorods", applied materials & interfaces, Vol. 6, No. 13, pp. 10113-10120, 2014. [54] Laxman, K., Myint, M. T. Z., Khan, R., Pervez, T. and Dutta, J., "Improved desalination by zinc oxide nanorod induced electric field enhancement in capacitive deionization of brackish water", Desalination, Vol. 359, pp. 64–70, 2015. [55] Laxman, K., Al Gharibi, L. and Dutta, J., "Capacitive deionization with asymmetric electrodes: Electrode capacitance vs electrode surface area", Electrochimica Acta, Vol. 176, pp. 420–425, 2015. [56] Jeon, S. I., Park, H. R., Yeo, J. G., Yang, S., Cho, C. H., Han, M. H., and Kim, D. K., "Desalination via a new membrane capacitive deionization process utilizing flow-electrodes", Energy Environ. Sci., Vol. 6, pp. 1471–1475, 2013. [57] Hatzell, K. B., Iwama, E., Ferris, A., Daffos, B., Urita, K., Tzedakis, T., Chauvet, F., Taberna, P. L., Gogotsi, Y. and Simon, P., "Capacitive deionization concept based on suspension electrodes without ion exchange membranes", Electrochem. Commun., Vol. 43, pp. 18–21, 2014. [58] Jeon, S. I., Yeo, J. G., Yang, S. C., Choi, J. C., Kim, D. K. and Mater, J. Chem., "Ion storage and energy recovery of flow-electrode capacitive deionization process", J. Mater. Chem. A, Vol. 2, pp. 6378−6383, 2014. [59] Yang, S. C., Jeon, S. I., Kim, H., Choi, J., Yeo, J. G., Park, H. R. and Kim, D. K., "Stack design and operation for scaling up the capacity of flow-electrode capacitive deionization technology", ACS Sustainable Chem. Eng., Vol. 4, No. 8, pp. 4174-4180, 2016. [60] Yang, S. C., Choi, J., Yeo, J. G., Jeon, S. I., Park, H. R. and Kim, D. K., "Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration", Environ. Sci. Technol., Vol. 50, No. 11, pp. 5892–5899, 2016. [61] Park, H. R., Choi, J., Yang, S., Kwak, S. J., Jeon, S. I., Han, M. H. and Kim, D. K., "Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization", The Royal Society of Chemistry, Vol. 6, pp. 69720–69727, 2016. [62] Yanga, S. C., Kima, H., Jeon, S. I., Choia, J., Yeob, J. G., Parka, H. R., Jinc, J. and Kim, D. K., "Analysis of the desalting performance of flow-electrode capacitive deionization under short-circuited closed cycle operation", Desalination, Vol. 424, pp. 110–121, 2017. [63] Cho, Y., Lee, K. S., Yang, S. C., Choi, J., Park, H. R. and Kim, D. K., "A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization", Energy Environ. Sci.,Vol. 10, pp. 1746-1750, 2017. [64] Porada, S., Weingarth, D., Hamelers, H. V. M., Bryjak M., Presser, V. and Biesheuvel, P.M., "Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation", J. Mater. Chem. A, Vol. 2, No. 24, pp. 9313−9321, 2014. [65] Porada, S., Sales, B. B., Hamelers, H. V. M. and Biesheuvel, P. M., "Water Desalination with Wires", J. Phys. Chem. Lett., Vol. 3, pp. 1613–1618, 2012. [66] Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J. S., Keesman, K. J., Kaskel, S., Biesheuvel P. M. and Presser, V., "Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization", Energy Environ. Sci., Vol. 6, pp. 3700-12, 2013. [67] Gendel, Y., Rommerskirchen, A., David, O. and Wessling, M., "Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology", Electrochemistry Communications, Vol. 46, pp. 152–156, 2014. [68] Rommerskirchen, A., Gendel, Y. and Wessling, M., "Single module flow-electrode capacitive deionization for continuous water desalination", Electrochemistry Communications, Vol. 60, pp. 34-37, 2015. [69] Xu, P., Drewes, J. E., Heil, D., and Wang, G., "Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology", Water Res., Vol. 42, pp. 2605–2617, 2008. [70] Jung, H. H., Hwang, S. W., Hyun, S. H., Lee, K. H., and Kim, G. T., "Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying", Desalination, Vol. 216, pp. 377–385, 2007. [71] Doornbusch, G. J., Dykstra, J. E., Biesheuvel, P. M. and Suss, M. E., "Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization", Journal of Materials Chemistry A, Vol. 4, pp. 3642-3647, 2016. [72] Cho, Y., Lee, K. S., Yang, S. C., Choi, J., Park, H. R., and Kim, D. K., "A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization", Energy & Environmental Science, Vol. 10, No. 8, pp. 1746-1750, 2017. [73] Nikfar, M., Alemrajabi, A, Choo, K. Y., Youn, Y. and Kim, D. K., "Experimental study on the structure of spacer in a flow-electrode capacitive deionization", Desalination and water treatment, In press, 2020. [74] Nikfar, M., Alemrajabi, A, Choo, K. Y., Kwak, S. J. and Kim, D. K., "Investigation on the Effect of Inlet Condition of Flow-Electrode and Electrolyte on the Water Desalination Performance of FCDI", Heat and mass transfer, In press, 2020. [75] Heldenbrand, A., Development of a predictive and mechanistic model for capacitive deionization, Master of science thesis, RICE University, USA, 2015. [76] Laxman Kunjali, K., water desalination by nanostructuring enhanced control of capacitive deionization, PhD thesis, Department of Electrical and Computer Engineering College of Engineering, Sultan Qaboos University, Sultanate of Oman, 2015. [77] Helmholtz, H., "Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche", Annalen der Physik und Chemie, Vol. 165, No. 6, pp. 211-233, 1853. [78] Burt, R., Birkett, G., Zhao, X. S., "A review of molecular modelling of electric double layer capacitors", Physical Chemistry Chemical Physics, Vol. 16, pp. 6519-6538, 2014. [79] Stern, H. O., "Zur theorie der elektrolytischen doppelschicht", Zeitschrift für Elektrochemie und angewandte physikalische Chemie, Vol. 30, No. 21-22, pp. 508-516, 1924. [80] Biesheuvel, P. M., Zhao, R., Porada, S. and Van der Wal, A., "Theory of membrane capacitive deionization including the effect of the electrode pore space", Journal of Colloid and Interface Science, Vol. 360, pp. 239-248, 2011. [81] Biesheuvel, P. M., Porada, S., Levi, M. and Bazant, M. Z., "Attractive forces in microporous carbon electrodes for capacitive deionization", J. Solid State Electrochem, Vol. 18, pp. 1365–1376, 2014. [82] López-García, J. J., Horno, J. and Grosse, C., "Influence of the finite size and effective permittivity of ions on the equilibrium double layer around colloidal particles in aqueous electrolyte solution", Journal of Colloid and Interface Science, Vol. 428, pp. 308-315, 2014. [83] Carnahan, N. F. and Starling, K. E., "Equation of state for nonattracting rigid spheres", Journal of Chemical Physics, Vol. 51, No. 2, pp. 635, 1969. [84] Song, Y., Mason, E. A. and Stratt, R. M., "Why Does the Carnahan-Starling Equation Work So Well?", Journal of Physical Chemistry, Vol. 93, pp. 6916-6919, 1989. [85] Biesheuvel, P. M., "Thermodynamic cycle analysis for capacitive deionization", Journal of Colloid and Interface Science, Vol. 332, pp. 258-264, 2009. [86] Jeon, B. G., NO, H. C., Jeong, I. K. and Lee, J. I., "Development of a two-dimensional coupled-implicit numerical tool for the optimal design of CDI electrodes", Desalination, Vol. 274, pp. 226–236, 2011. [87] Jeon, B. G. and NO, H. C., "Development of a two-dimensional coupled-implicit numerical tool for analysis of the CDI operation", Desalination, Vol. 288, pp. 66–71, 2012. [88] Jeon, B. G. and NO, H. C., "Multi-dimensional simulation tool development for the performance evaluation of a CDI electrode and its geometry parameter optimization", Desalination and Water Treatment, Vol. 51, pp. 1377–1384, 2013. [89] Hemmatifar, A., Stadermann, M. and Santiago, J. G., "Two-Dimensional Porous Electrode Model for Capacitive Deionization", J. Phys. Chem. C, Vol. 119, No. 44, pp. 24681-24694, 2015. [90] Qu, Y., Campbell, P. G., Hemmatifar, A., Knipe, J. M., Loeb, C. K., Reidy, J. J., Hubert, M. A., Stadermann, M. and Santiago, J. G., "Charging and transport dynamics of a flow-through electrode capacitive deionization system", J. Phys. Chem. B, Vol. 122, No. 1: pp. 240–49, 2018. [91] Laughton, M.A. and Warne, D.J., Electrical Engineer's Reference Book. 16th Ed. Newnes, Boston, Oxford England, 2003. [92] Masliyah, J.H. and Bhattacharjee, S., Electrokinetic and colloid transport phenomena, Published by John Wiley & Sons, Inc., Hoboken, New Jersey, 1994. [93] Mirbozorgi, S. A. and Niazmand, H., "Numerical investigation and study of inductive voltage in perasure deriven fluid flow in fine vessels", journal of Amirkabir, Mechanical Engineering, Vol. 42, No. 2, 2010. [94] Newman, J. and Thomas-Alyea, K. E., ELECTROCHEMICAL SYSTEMS, Third Edition, Published by John Wiley & Sons, Inc, 2004. [95] Rashidi, S., Nouri-Borujerdi, A., Valipour, M. S., Ellahi, R. and Pop, I., "Stress-jump and continuity interface conditions for a cylinder embedded in a porous medium", Transp Porous Med, Vol. 107, pp. 171–186, 2015. [96] Bitar, R. W. and Ahmad, A., "solar vs nuclear: which is cheaper for water desalination?", Policy Brief #2. AUB Policy Institute (Issam Fares Institute for Public Policy and International Affairs) American University of Beirut, 2017.