بهینه‌سازی مصرف انرژی ساختمان با درنظرگرفتن عدم قطعیت‌ها

نویسندگان

دانشگاه شیراز

چکیده

اولین گام در راستای دستیابی به ساختمان‌های هوشمند، تحلیل مصرف و بهینه‌سازی انرژی است. از آنجا که بخشی از پارامترهای مؤثر بر این تحلیل‌ها غیرقطعی هستند، در این مقاله به تحلیل مصرف و بهینه‌سازی انرژی در ساختمان به‌صورت احتمالی ‌پرداخته می‌شود. بدین منظور، تابع چگالی احتمال پارامترهای غیرقطعی ساختمان با استفاده از روش Empirical Rule مدل شده و سپس به بهینه‌سازی مصرف انرژی ساختمان پرداخته می‌شود. برای محاسبۀ مصرف انرژی در ساختمان، از نرم‌افزار انرژی‌پلاس و برای بهینه‌سازی از نرم‌افزار متلب استفاده می‌شود. توابع هدف در بهینه‌سازی چندهدفۀ پیشنهادی، چگالی انرژی مصرفی ساختمان و شاخص راحتی حرارتی ساکنان می‌باشند. از یک ساختمان تجاری دوازده‌طبقه به‌منظور نمونۀ مورد مطالعه استفاده می‌شود. به‌منظور ارزیابی روش پیشنهادی، روش احتمالی تحلیل بازدهی مصرف انرژی با روش غیراحتمالی مرسوم مقایسه می‌شود. نتایج حاصل از این ارزیابی به‌خوبی نشان می‌دهد که درنظرنگرفتن پارامترهای غیرقطعی در ساختمان، خطای چشمگیری در تحلیل بازدهی انرژی آن سبب می‌شود به‌طوری‌که میانگین اختلاف بین مقادیر بهینه پارامترهای متغیر حاصل از هر دو روش به 34% می‌رسد و اختلاف نمودار پارتوی روش پیشنهادی احتمالی و روش غیراحتمالی هم ممکن است بیش از 10% شود. در انتها نیز حساسیت روش پیشنهادی نسبت به تغییر اقلیم و آب‌و‌هوا ارزیابی می‌شود.

کلیدواژه‌ها


[1] Allouhi, A., El Fouih, Y., Kousksou, T., Jamil, A., Zeraouli, Y. and Mourad, Y., "Energy Consumption and Efficiency in Buildings: Current Status and Future Trends", Journal of Cleaner production, Vol. 109, pp. 118-130, 2015. [2] Kibert, C.J., "Sustainable Construction: Green Building Design and Delivery", John Wiley & Sons, 2016. [3] Marszal, A.J. and et al., "Zero Energy Building–a Review of Definitions and Calculation Methodologies", Energy and buildings, Vol. 43, No. 4, pp. 971-979, 2011. [4] Pless, S. and Paul Torcellini PhD, P., "Getting to Net Zero", ASHRAE Journal, Vol. 51, No. 9, pp. 18, 2009. [5] Crawley, D.B., Hand, J.W., Kummert, M. and Griffith, B.T., "Contrasting the Capabilities of Building Energy Performance Simulation Programs", Building and environment, Vol. 43, No. 4, pp. 661-673, 2008. [6] Nguyen, A.-T., Reiter, S. and Rigo, P., "A Review on Simulation-Based Optimization Methods Applied to Building Performance Analysis", Applied Energy, Vol. 113, pp. 1043-1058, 2014. [7] Delgarm, N., Sajadi, B., Delgarm, S. and Kowsary, F., "A Novel Approach for the Simulation-Based Optimization of the Buildings Energy Consumption Using Nsga-Ii: Case Study in Iran", Energy and Buildings, Vol. 127, pp. 552-560, 2016. [8] Delgarm, N., Sajadi, B., Kowsary, F., and Delgarm, S., "Multi-Objective Optimization of the Building Energy Performance: A Simulation-Based Approach by Means of Particle Swarm Optimization (Pso)," Applied Energy, Vol. 170, pp. 293-303, 2016. [9] Junghans, L. and Darde, N., "Hybrid Single Objective Genetic Algorithm Coupled with the Simulated Annealing Optimization Method for Building Optimization", Energy and Buildings, Vol. 86, pp. 651-662, 2015. [10] Murray, S.N., Walsh, B.P., Kelliher, D. and O'Sullivan, D., "Multi-Variable Optimization of Thermal Energy Efficiency Retrofitting of Buildings Using Static Modelling and Genetic Algorithms–a Case Study", Building and Environment, Vol. 75, pp. 98-107, 2014. [11] Wright, J. and Alajmi, A., "Efficient Genetic Algorithm Sets for Optimizing Constrained Building Design Problem", International Journal of Sustainable Built Environment, Vol. 5, No. 1, pp. 123-131, 2016. [12] Yu, W., Li, B., Jia, H., Zhang, M. and Wang, D., "Application of Multi-Objective Genetic Algorithm to Optimize Energy Efficiency and Thermal Comfort in Building Design", Energy and Buildings, Vol. 88, pp. 135-143, 2015. [13] خداکرمی، جمال و قبادی، پریسا، «بهینه سازی مصرف انرژی در یک ساختمان اداری مجهز به سیستم مدیریت هوشمند»، نشریه علمی‌پژوهشی مهندسی و مدیریت انرژی، سال ششم، شمارۀ دوم، صفحه 12ـ23، تابستان 1395. [14] احمدی، روح‌الله و سعیدی، محمدحسن، «بهینه‌سازی عددی یک رادیاتور خانگی و بررسی تجربی ظرفیت حرارتی آن»، نشریه علمی‌پژوهشی مهندسی و مدیریت انرژی، سال پنجم، شمارۀ سوم، صفحه 50ـ59، پاییز 1394. [15] Celarec, D. and Dolšek, M., "The Impact of Modelling Uncertainties on the Seismic Performance Assessment of Reinforced Concrete Frame Buildings", Engineering Structures, Vol. 52, pp. 340-354, 2013. [16] Liel, A.B., Haselton, C.B., Deierlein, G.G. and Baker, J. W., "Incorporating Modeling Uncertainties in the Assessment of Seismic Collapse Risk of Buildings", Structural Safety, Vol. 31, No. 2, pp. 197-211, 2009. [17] Manfren, M., Aste, N. and Moshksar, R., "Calibration and Uncertainty Analysis for Computer Models–a Meta-Model Based Approach for Integrated Building Energy Simulation", Applied energy, Vol. 103, pp. 627-641, 2013. [18] Amiri, S.S., Mottahedi, M. and Asadi, S., "Using Multiple Regression Analysis to Develop Energy Consumption Indicators for Commercial Buildings in the Us", Energy and Buildings, Vol. 109, pp. 209-216, 2015. [19] Bordbari, M.J., Seifi, A.R. and Rastegar, M., "Probabilistic Energy Consumption Analysis in Buildings Using Point Estimate Method", Energy, Vol. 142, pp. 716-722, 2018. [20] Ioannou, A. and Itard, L., "Energy Performance and Comfort in Residential Buildings: Sensitivity for Building Parameters and Occupancy", Energy and Buildings, Vol. 92, pp. 216-233, 2015. [21] Sun, S., Kensek, K., Noble, D. and Schiler, M., "A Method of Probabilistic Risk Assessment for Energy Performance and Cost Using Building Energy Simulation", Energy and Buildings, Vol. 110, pp. 1-12, 2016. [22] Van Gelder, L., Janssen, H. and Roels, S., "Probabilistic Design and Analysis of Building Performances: Methodology and Application Example", Energy and Buildings, Vol. 79, pp. 202-211, 2014. [23] Yang, Z. and Becerik-Gerber, B., "A Model Calibration Framework for Simultaneous Multi-Level Building Energy Simulation", Applied Energy, Vol. 149, pp. 415-431, 2015. [24] Neto, A.H. and Fiorelli, F.A.S., "Comparison between Detailed Model Simulation and Artificial Neural Network for Forecasting Building Energy Consumption", Energy and buildings, Vol. 40, No. 12, pp. 2169-2176, 2008. [25] Krarti, M., "Energy Audit of Building Systems: An Engineering Approach", CRC press, 2016. [26] Taleghani, M., Tenpierik, M., Kurvers, S. and Van Den Dobbelsteen, A., "A Review into Thermal Comfort in Buildings", Renewable and Sustainable Energy Reviews, Vol. 26, pp. 201-215, 2013. [27] Fanger, P.O. and Toftum, J., "Extension of the Pmv Model to Non-Air-Conditioned Buildings in Warm Climates", Energy and buildings, Vol. 34, No. 6, pp. 533-536, 2002. [28] Fanger, P., "Moderate Thermal Environments Determination of the Pmv and Ppd Indices and Specification of the Conditions for Thermal Comfort", ISO 7730, 1984. [29] Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T., "A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: Nsga-Ii", in International Conference on Parallel Problem Solving From Nature, 2000, pp. 849-858: Springer. [30] Department of Energy (DOE). (2017, december). "Commercial Reference Buildings". Available: https://energy.gov/eere/buildings/commercial-reference-buildings [31] ASHRAE Standard "Standard 55-2013: Thermal Environmental Conditions for Human Occupancy", American Society of Heating, Refrigerating, and air-conditioning Engineers, Inc., Atlanta, GA 2013. [32] Cecconi, F.R., Manfren, M., Tagliabue, L.C., Ciribini, A. L.C. and De Angelis, E., "Probabilistic Behavioral Modeling in Building Performance Simulation: A Monte Carlo Approach", Energy and Buildings, Vol. 148, pp. 128-141, 2017. [33] Cheng, Q., Wang, S., Yan, C. and Xiao, F., "Probabilistic Approach for Uncertainty-Based Optimal Design of Chiller Plants in Buildings", Applied Energy, Vol. 185, pp. 1613-1624, 2017. [34] Tagliabue, L.C., Manfren, M., Ciribini, A.L.C. and De Angelis, E., "Probabilistic Behavioural Modeling in Building Performance Simulation—the Brescia Elux Lab", Energy and Buildings, Vol. 128, pp. 119-131, 2016. [35] ASHRAE Standard "Standard 169-2006: Weather Data for Building Design Standards", American Society of Heating, Refrigerating, and air-conditioning Engineers, Inc., Atlanta, GA, 2006.