ارائۀ روش جدیدی برای تعیین ظرفیت بهینۀ ذخیره‌ساز‌های ترکیبی در ریزشبکۀ مستقل

نویسندگان

1 دانشگاه شهید بهشتی

2 دانشگاه تهران

چکیده

در سال‌های اخیر، استفاده از ذخیره‌ساز‌های ترکیبی انرژی در سیستم‌های تجدیدپذیر به‌دلیل مواردی مانند افزایش طول عمر ذخیره‌ساز‌ها و بهبود قابلیت اطمینان مورد توجه قرار گرفته است. در این مقاله، روش جدیدی برای تعیین ظرفیت باتری و ابرخازن در یک ریزشبکۀ مستقل ارائه شده است. اختلاف توان‌های تولیدی و مصرفی با استفاده از تبدیل فوریۀ گسسته به حوزۀ فرکانس انتقال داده می‌شود و با تعیین فرکانس قطع تابع هزینۀ بهینه حاصل می‌شود، به‌طوری که فرکانس‌های سریع توان توسط ابرخازن و فرکانس‌های کند توسط باتری تأمین می‌شود. در روش ارائه‌شده، تعیین ظرفیت ذخیره‌سازها به‌گونه‌ای انجام شده است که ضمن پاسخ‌گویی مناسب به بارها طول عمر ذخیره‌سازها نیز حداکثر شود. استفاده از روش پیشنهادی به‌دلیل ترکیب ذخیره‌سازها دینامیک عملکردی سیستم را بهبود داده و با کاهش تعداد شارژ و دشارژ باتری، هزینۀ ذخیره‌سازی را کاهش می‌دهد. به‌دلیل ضرورت و اهمیت ذخیره‌سازها در سیستم‌های مستقل، ریزشبکۀ در نظر گرفته‌شده یک ریزشبکۀ مستقل از شبکه بوده که شامل تولیدکنندگان مختلف توان است. برای اعتبارسنجی روش، از داده‌های آماری واقعی استفاده شده و روش پیشنهادی روی یک ریزشبکۀ نمونه تست و نتایج حاصل مؤثر بودن روش را تأیید می‌کنند.

کلیدواژه‌ها


[1] Pflaum, P., M., Alamir, M.Y. Lamoudi., "Battery Sizing for PV Power Plants Under Regulations Using Randomized Algorithms", Renewable Energy, Vol. 113, pp. 596-607, 2017. [2] غفارپور، رضا، مظفری، بابک، رنجبر، علی‌محمد، «طراحی و بهینه‌سازی یک سیستم ترکیبی فتوولتائیک-باتری-دیزل ژنراتور به‌منظور تغذیۀ یک شبکۀ دورافتادۀ جزیره‌ای»، نشریۀ علمی پژوهشی مهندسی و مدیریت انرژی، سال هفتم، شمارۀ 2، صفحه ۱۴ـ۲۵، تابستان ۱۳۹۶. [3] کیا، محسن، ستایش نظر، مهرداد، سپاسیان، محمدصادق، «برنامه‌ریزی بهینۀ مدیریت بارهای کنترل‌پذیر و مشارکت واحدهای تولید همزمان برق و حرارت در حضور ذخیره‌ساز الکتریکی»، نشریه علمی پژوهشی مهندسی و مدیریت انرژی، سال هفتم، شمارۀ 2، صفحه ۲ـ۱۳، تابستان ۱۳۹۶. [4] David Wenzhong, Gao., "Energy Storage for Sustainable Microgrid", Academic Press, Oxford, 2015. [5] Vladimir S. Bagotsky, Alexander M. Skundin, Yurij M. Volfkovich "Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors", wiley, February 2015. [6] Chen, S. X., Gooi, H. B., Wang, M. Q., "Sizing of Energy Storage for Microgrids", IEEE Transactions on Smart Grid, Vol. 3, No. 1, pp. 142-151, 2012. [7] Ghiassi-Farrokhfal , Y., Rosenberg , C., Keshav, Adjaho, S. M. B., "Joint Optimal Design and Operation of Hybrid Energy Storage Systems", IEEE Journal on Selected Areas in Communications, Vol. 34, No. 3, pp. 639-650, 2016. [8] Hongjie, Jia., Yunfei ,M., Yan ,Qi., "A statistical Model to Determine the Capacity of Battery–Supercapacitor Hybrid Energy Storage System in Autonomous Microgrid", International Journal of Electrical Power & Energy Systems, Vol. 54, pp. 516-524, 2014. [9] Abbassi, A., Dami, M.A, Jemli, M., "A Statistical Approach for Hybrid Energy Storage System Sizing Based on Capacity Distributions in an Autonomous PV/Wind Power Generation System", Renewable Energy, Vol. 103, pp. 81-93, 2017. [10] Xiao, J., Bai, L. F., Liang, H., Wang, C., "Sizing of Energy Storage and Diesel Generators in an Isolated Microgrid Using Discrete Fourier Transform (DFT)", IEEE Transactions on Sustainable Energy, Vol. 5, No. 3, pp. 907-916, 2014. [11] Dufo-Lopez, R., Bernal-Agustin, J.L, "Design and Control Strategies of PV-Diesel Systems Using Genetic Algorithms", Solar Energy, Vol. 97, pp. 33-46, 2005. [12] Galvin, M.E., Hurley, W.G., "Optimisation of a Photovoltaic Battery Ultracapacitor Hybrid Energy Storage System", Solar Energy, Vol. 86, pp. 3009-3020, 2012. [13] Atia, R., Yamada, N., "Sizing and Analysis of Renewable Energy and Battery Systems in Residential Microgrids", IEEE Transactions on Smart Grid, Vol. 7, No. 3, pp. 1204-1213, 2016. [14] Martín, I.S., Ursúa, A., Sanchis, P., "Integration of Fuel Cells and Supercapacitors in Electrical Microgrids: Analysis, Modelling and Experimental Validation", International Journal of Hydrogen Energy, Vol. 38, No.2 pp. 11655-11671, 2013. [15] Yuan, Y., Sun, C., Li, M., Cho, S., Li, Q., "Determination of Optimal Supercapacitor-Lead-Acid Battery Energy Storage Capacity for Smoothing Wind Power Using Empirical Mode Decomposition and Neural Network", Electric Power Systems Research, Vol. 127, pp. 323-331, 2015. [16] Feroldi, D., Carignano, M., "Sizing for Fuel Cell/Supercapacitor Hybrid Vehicles Based on Stochastic Driving Cycles", Applied Energy, Vol. 183, pp. 645-658, 2016. [17] Abeywardana, B.D.W., Hredzak, B., Agelidis,V.G., Demetriades, D.G., "Supercapacitor Sizing Method for Energy-Controlled Filter-Based Hybrid Energy Storage Systems", IEEE Transactions on Power Electronics, Vol. 32, No. 2, pp. 1626-1637, 2017. [18] Lahyani, A., Sari, A., Lahbib, I., Venet, P., "Optimal Hybridization and Amortized Cost Study of Battery/Supercapacitors System Under Pulsed Loads", Journal of Energy Storage, Vol. 6, pp. 222-231, 2016. [19] Liu, Y., Du, W., Xiao, L., Wang, H., Bu, S., Cao, J., "Sizing a Hybrid Energy Storage System for Maintaining Power Balance of an Isolated System With High Penetration of Wind Generation", IEEE Transactions on Power Systems, Vol. 31, No. 4, pp. 3267-3275, 2016. [20] Wee, K.W., Choi, S., Vilathgamuwa, D.M., "Design of a Least-Cost Battery-Supercapacitor Energy Storage System for Realizing Dispatchable Wind Power", IEEE Transactions on Sustainable Energy, Vol. 4, No. 3, pp. 786-796, July 2013. [21] Sharma, S., Bhattacharjee, S., Bhattacharya, A., "Grey Wolf Optimisation for Optimal Sizing of Battery Energy Storage Device to Minimise Operation Cost of Microgrid", IET Generation, Transmission & Distribution, Vol. 10, No. 3, pp. 625-637, 2016. [22] Bahmani-Firouzi, B., Azizpanah-Abarghooee, R., "Optimal Sizing of Battery Energy Storage for Micro-grid Operation Management Using a New Improved Bat Algorithm", International Journal of Electrical Power & Energy Systems, Vol. 56, pp. 42-54, 2014. [23] Zhua, T., Sun, W., "Optimization of Battery–Supercapacitor Hybrid Energy Storage Station in Wind/Solar Generation System", IEEE Transactions on Sustainable Energy, Vol. 5, No. 2, pp. 408-415, 2014. [24] Sudha, G.N, Senroy, N., "A Unified Approach to the Sizing and Control of Energy Storage Systems", Electric Power Components and Systems, Vol. 45, No.7, pp. 693-704, 2017. [25] Wang, X., Yue, M., Muljadi, E., Gao, W., "Probabilistic Approach for Power Capacity Specification of Wind Energy Storage Systems", IEEE Transactions on Industry Applications, Vol. 50, No. 2, pp. 1215-1224, 2014. [26] Unamuno, E., Andoni, J., " Hybrid ac/dc Microgrids—Part II: Review and Classification of Control Strategies", Renewable and Sustainable Energy Reviews, Vol. 52, pp. 1123-1134, 2015. [27] Rekioua, D., Matagne, E., "Modeling of Solar Irradiance and Cells. In: Optimization of Photovoltaic Power Systems", Green Energy and Technology, Vol. 5, No. 2, 2012. [28] Kim, Y.H, Ha, H.D., "Design of Interface Circuits with Electrical Battery Models", IEEE Transactions on Industrial Electronics, Vol. 44, No. 1, pp. 81‐ 86, 1997. [29] Zubieta, L., Bonert, R., "Characterization of Double Layer Capacitors for Power Electronics Applications", IEEE Transactions on Industry Applications, Vol. 36, No. 1, 2000. [30] Ogunjuyigbe, A.S.O., Ayodele, T.R., Akinola, O.A., "Optimal Allocation and Sizing of PV/Wind/Split-Diesel/Battery Hybrid Energy System for Minimizing Life Cycle Cost, Carbon Emission and Dump Energy of Remote Residential Building", Applied Energy, Vol. 171, pp. 153-171, 2016. [31] Dufo, R., Rojas, L., Bernal, L., "Comparison of Different Lead–Acid Battery Lifetime Prediction Models for Use in Simulation of Stand-Alone Photovoltaic Systems", Applied Energy, Vol. 115, No. 15, pp. 242-253, 2014. [32] Fossati, J., Galarza, A., Villate, A., Fontán, L., "A Method for Optimal Sizing Energy Storage Systems for Microgrids", Solar Energy, Vol. 80, No.2 pp. 578-588, 2006. Renewable Energy, Vol. 77, pp. 539-549, 2015.