مطالعات احتمالاتی ولتاژ در شبکۀ توزیع با حضور تولیدات پراکندۀ بادی با درنظرگرفتن مدل‌های استاتیکی بار با توزیع احتمال گاما

نویسندگان

دانشگاه شهید بهشتی

چکیده

باتوجه‌به رشد روزافزون تولیدات پراکنده و بارهای جدید نظیر اتومبیل‌های الکتریکی در شبکه‌های توزیع و توسعۀ این شبکه‌ها، مسئلۀ ارزیابی احتمالاتی این سیستم‌ها به موضوعی جدی تبدیل شده است. به همین منظور، این مقاله از یک الگوریتم پخش بار احتمالاتی (PLF) برای بررسی اثرات عدم قطعیت در شبکه‌های توزیع استفاده می‌کند. این روش بر پایۀ شبیه‌سازی مونت کارلو ارائه شده که مزیت اصلی آن دقت بسیار فراوان آن است. روش مورداستفاده قادر به بررسی اثر تولیدات پراکنده بر ولتاژ شبکۀ توزیع است. با بررسی انواع مدل تولیدات پراکنده، بهترین مدل برای استفاده در مسئلۀ پیشنهادی موردتوجه قرار گرفته است. برای ارزیابی دقیق‌تر مسئله، انواع مدل‌های بار استاتیکی در مدل PLF در نظر گرفته شده است. در فرایند حل، با بررسی انواع روش‌های پخش بار پسرو-پیشرو (که مناسب‌ترین روش‌های پخش بار در شبکه‌های توزیع هستند)، روش مناسب برای استفاده در مسئلۀ PLF به‌کار رفته است. این روش بر پایۀ جمع توانی بنا شده است. توزیع احتمال گوسی و گاما برای بار و مدل وایبل برای باد نیز در مسئلۀ PLF در نظر گرفته شده است. درنهایت، رهیافت پیشنهادی روی شبکۀ توزیع استاندارد IEEE اجرا شده و نتایج در چهار سناریوی مختلف، بررسی و تحلیل گردیده است. تأثیر مکان و میزان تزریق تولیدات بادی، نوع متغیرهای تصادفی بار، مدل‌های بار توان ثابت، امپدانس ثابت و جریان ثابت و تغییر واریانس توزیع‌های احتمال ورودی، در سناریوهای مختلف موردبررسی و تحلیل قرار گرفت.

کلیدواژه‌ها


[1] Chen, P. C., Salcedo, R., et al., "Analysis of Voltage Profile Problems due to the Penetration of Distributed Generation in Low-Voltage Secondary Distribution Networks", IEEE Trans. on Power Delivery, Vol. 27, No. 4, 2012. [2] Su, C. L., "Stochastic Evaluation of Voltages in Distribution Networks with Distributed Generation using Detailed Distribution Operation Models", IEEE Trans. Power Syst., Vol. 25, No. 2, pp. 786-795, 2010. [3] Rodrigues, A. B., Prada, R. B., da Silva, M. D. G., "Voltage Stability Probabilistic Assessment in Composite Systems: Modeling Unsolvability and Controllability Loss", IEEE Trans. Power Syst., Vol. 25, No. 3, 2010. [4] Borkowska, B., "Probabilistic Load Flow", IEEE Trans. Power Appl. Syst., PAS-93, pp. 752–759, 1974. [5] Carpinelli, G., Caramia, P., Varilone, P., "Multi-Linear Monte Carlo Simulation Method for Probabilistic Load Flow of Distribution Systems with Wind and Photovoltaic Generation Systems", Renewable Energy, Vol. 76, pp. 283-295, 2015. [6] Allan, R., da Silva, A. L., Burchett, R., "Evaluation Methods and Accuracy in Probabilistic Load Flow Solutions", IEEE Trans. Power App. Syst., No. 5, pp. 2539–2546, 1981. [7] Zhang, P., Lee, S. T., "Probabilistic Load Flow Computation using the Method of Combined Cumulants and Gram-Charlier Expansion", IEEE Trans. Power Systems, Vol. 19, No. 1, pp. 676-682, 2004. [8] Williams, T., Crawford, C., "Probabilistic Load Flow Modeling Comparing Maximum Entropy and Gram-Charlier Probability Density Function Reconstructions", IEEE Trans. Power Syst., Vol. 28, No. 1, 2013. [9] Usaola, J., "Probabilistic Load Flow in Systems with Wind Generation", IET Gener. Transm. Distrib., Vol.3, No. 12, pp. 1031–1041, 2009. [10] Pourahmadi-Nakhli, M., Seifi, A. R., Taghavi, R., "A Nonlinear-Hybrid Fuzzy/Probabilistic Load Flow for Radial Distribution Systems", Int. J. Electr. Power Energy Syst., Vol. 47, pp. 69–77, 2013. [11] Long, C., Farrag, M. E. A., Chengke, Z., Donald, M. H., "Statistical Quantification of Voltage Violations in Distribution Networks Penetrated by Small Wind Turbines and Battery Electric Vehicles", IEEE Trans. Power Syst., Vol. 28, No. 3, 2013. [12] Nikmehr, N., Ravadanegh, S. N., "Heuristic Probabilistic Power Flow Algorithm for Microgrids Operation and Planning", IET Gener. Transm. Distrib., Vol. 9, No. 11, pp. 985–995, 2015. [13] Aien, M., Rashidinejad, M., Fotuhi-Firuzabad, M., "On Possibilistic and Probabilistic Uncertainty Assessment of Power Flow Problem: A Review and a New Approach", Renewable and Sustainable Energy Reviews, Vol. 37, pp. 883–895, 2014. [14] Chen, C., Wu, W., Boming, Z., Sun, H., "Correlated Probabilistic Load Flow using a Point Estimate Method with Nataf Transformation", Electrical Power and Energy Systems, Vol. 65, pp. 325–333, 2015. [15] Villanueva, D., Feijóo, A. E., Pazos, J. L., "An Analytical Method to Solve the Probabilistic Load Flow Considering Load Demand Correlation using the DC Load Flow", Electric Power Systems Research, Vol. 110, pp. 1-8, 2014. [16] Gupta, N., "Probabilistic Load Flow with Detailed Wind Generator Models Considering Correlated Wind Generation and Correlated Loads", Renewable Energy, Vol. 94, pp. 96-105, 2016. [17] Ran, X., Miao, S., "Three-Phase Probabilistic Load Flow for Power System with Correlated Wind, Photovoltaic and Load", IET Generation, Transmission & Distribution, Vol. 10, No. 12, pp. 3093–3101, 2016. [18] Kabir, M. N., Mishra, Y., Bansal, R. C., "Probabilistic Load Flow for Distribution Systems with Uncertain PV Generation", Applied Energy, Vol. 163, pp. 343–351, 2016. [19] Wua, C., Wenb, F., Lou, Y., Xin, F., "Probabilistic Load Flow Analysis of Photovoltaic Generation System with Plug-in Electric Vehicles", Electrical Power and Energy Systems, Vol. 64, pp. 1221–1228, 2015. [20] Ruiz-Rodriguez, F. J., Hernandez, J. C., Jurado, F., "Probabilistic Load Flow for Photovoltaic Distributed Generation using the Cornish- Fisher Expansion", Elect. Power Syst. Res., Vol. 89, pp. 129–138, 2012. [21] Mahmoud, G. A., "Voltage Stability Analysis of Radial Distribution Networks using Catastrophe Theory", IET Gener. Trans. Distrib., Vol. 6, No. 7, pp. 612–618, 2012. [22] Janecek, E., Georgiev, D., "Probabilistic Extension of the Backward/Forward Load Flow Analysis Method", IEEE Trans. Power Syst., Vol. 27, No. 2, pp. 695-704, 2012. [23] Kersting, W. H., Distribution System Modeling and Analysis, 3rd ed. Boca Raton, FL: CRC, 2012. [24] Haque, M. H., "A General Load Flow Method for Distribution Systems", Electric Power Systems Research, Vol. 54, pp.47-54, 2000. [25] Dragoslav, R., Taleski, R., "Two Novel Methods for Radial and Weakly Meshed Network Analysis", Electric Power Systems Research, Vol. 48, pp. 79-87, 1998. [26] Tsai-Hsiang, C., Mo-Shing, C., et al., "Distribution System Power Flow Analysis –a Rigid Approach", IEEE Trans. Power Del., Vol. 6, No. 3, pp. 1146-1152, 1991. [27] Masoum, A. S., Moses, P. S., Masoum, M. A. S., "Real-Time Coordination of Plug-in Electric Vehicle Charging in Smart Grids to Minimize Power Losses and Improve Voltage Profile", IEEE Trans. Smart Grid, Vol. 2, No. 3, pp. 456–467, 2011. [28] Augugliaro, A., Dusonchet, et al., "A Compensation-Based Method to Model PV Nodes in Backward/Forward Distribution Network Analysis", COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 26, No. 2, pp. 481–493, 2007. [29] Tsai-Hsiang, C., Nien-Che, Y., "Loop Frame of Reference Based Three-Phase Power Flow for Unbalanced Radial Distribution Systems", Electric power systems research, Vol. 80, pp. 799-806, 2010. [30] Teng, J. H., "Modelling Distributed Generations in Three-Phase Distribution Load Flow", IET Gen., Transm., Distrib., Vol. 2, No. 3, pp. 330–340, 2008. [31] Papadopoulos, P., Skarvelis-Kazakos, S., et al., "Electric Vehicles’ Impact on British Distribution Networks", IET Electr. Syst. Transp., Vol. 2, No. 3, pp. 91–102, 2012. [32] Siano, P., Mokryani, G., "Probabilistic Assessment of the Impact of Wind Energy Integration into Distribution Networks", IEEE Trans. Power Syst., Vol. 28, No. 4, 2013. [33] Taylor, H. M., Karlin, S., An Introduction to Stochastic Modeling, 3rd edition, Academic Press, 1998. [34] Divya, K. C., Rao, P. S. N., "Models for Wind Turbine Generating Systems and Their Application in Load Flow Studies", Electr. Power Syst. Res., Vol. 76, pp. 844–856, 2006. [35] Tourandaz Kenari, M., Sepasian, M. S., Setayesh Nazar, M., "Probabilistic Load Flow Computation using Saddle-Point Approximation", COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 36, No. 1, pp. 48-61, 2017. [36] Blair, N., Dobos, A. P., Freeman, J., Neises, T., Wagner, M., Ferguson, T., Gilman P, Janzou, S., System Advisor Model, sam 2014.1. 14: General description, National Renewable Energy Laboratory, Golden, CO., 2014. [37] Ruiz-Rodriguez, F. J., Hernandez, J. C., Jurado, F., "Probabilistic Load Flow for Radial Distribution Networks with Photovoltaic Generators", IET Renew. Power Gener., Vol. 6, No. 2, pp. 110-121, 2012. [38] Ettehadi, M., Ghasemi, H., Vaezzadeh, S., "Voltage Stability Based DG Placement in Distribution Network", IEEE Trans. Power Deliv., Vol. 28, No. 1, pp. 171-178, 2013. [39] Vicente, W. C. B., Caire, R., Hadjsaid, N., "Probabilistic Load Flow for Voltage Assessment in Radial Systems with Wind Power", Int. J. Electr. Power Energy Syst., Vol. 41, pp. 27–33, 2012.