ارزیابی عملکرد تلفیق آب‌شیرین‌کن چنداثرۀ تقطیری با تراکم بخار (MED-TVC) در یک سیستم تولید همزمان برق، حرارت و سرما

نویسندگان

دانشگاه محقق اردبیلی

چکیده

در این تحقیق، برای صرفه‌جویی و استفادۀ بهینه از انرژی اولیۀ تلفیق آب‌شیرین‌کن چند‌اثره و یک سیستم تولید همزمان گرما، سرما و توان با محرک توربین گاز مورد ارزیابی ترمودینامیکی قرار گرفته ‌است. اجزای سیستم تلفیقی عبارت‌انداز: کمپرسور، محفظۀ احتراق، توربین گاز، مبدل‌ بازیافت ‌حرارت سه‌فشاره، چیلر جذبی و آب‌شیرین‌کن چندمرحله‌ای. بخار کم‌فشار تولیدی در مبدل‌بازیافت‌حرارت برای مصرف چیلر جذبی، بخار با فشار میانی برای راه‌اندازی آب‌شیرین‌کن و بخار سوپرهیت پرفشار برای مصارف گرمایشی به‌کار می‌رود. مدل‌سازی سیستم با استفاده از نرم‌افزار Engineering Equation Solver(EES) و با درنظرگرفتن روابط موازنه‌های جرم و انرژی انجام ‌شده ‌است. نتایج مدل‌سازی نشان داد که با طرح جدید، بازده سیستم از 32 درصد به 84 درصد افزایش می‌یابد.

کلیدواژه‌ها


[1] Ghaebi, H., Saidi, M.H., Ahmadi, P., "Exergoeconomic Optimization of a Trigeneration System for Heating, Cooling and Power Production Purpose Based on TRR Method and using Evolutionary Algorithm", Applied Thermal Engineering, Vol. 36, pp. 113-125, 2012. [2] Ghaebi, H., Amidpour, M., Karikashi, S., rezayan, O., "Energy, Exergy and Thermoeconomic Analysis of a Combined Cooling, Heating and Power (CCHP) System with Gas Turbine Prime Mover"., Int. J. Energy Res; Vol. 35, pp. 697-709, 2011. [3] Wu, DW., Wang, RZ., "Combined Cooling, Heating and Power: a Review". Prog Energy Combust; Vol. 32, pp, 459-495, 2006. [4] Chicco, C., Mancarella, P., "Trigeneration Primary Energy Saving Evaluation for Energy Planning and Policy Development. Energy Policy", Vol. 35, pp. 6132-6144, 2007. [5] Hernández-Santoroyo, J., Sánchez-Cifuentes, A., "Trigeneration: an Alternative for Energy Savings". Appl Energy; 76, pp. 219-227, 2003. [6] Al-Sulaiman, FA., Hamdullahpur, F., Dincer, I., "Greenhouse Gas Emission and Exergy Assessments of an Integrated Organic Rankine Cycle with a Biomass Combustor for Combined Cooling, Heating and Power Production". Appl Therm Eng; Vol. 31, pp, 439-446, 2011. [7] Alasfour, F.N., Darwish, M.A., Bin Amer, A.O., "Thermal Analysis of ME-TVC+MEE Desalination Systems", Desalination, Vol. 174, pp. 39-61, 2005. [8] Kahraman, N., Cengel, Y.A., "Exergy Analysis of a MSF Distillation Plant", Energy Conversion and Management, Vol. 46, pp. 2625-2636, 2005. [9] Karl, F., Renaudin, V., Alonso, D., Hornut, J.M., "New MED Plate Desalination process:" Thermal Performances, Desalination, Vol. 166, pp. 53-62, 2004. [10] Shih, H., "Evaluating the Technologies of Thermal Desalination using Low-Grade Heat", Desalination, Vol. 182, pp. 461–469, 2005. [11] Ji, J., Wang, R., Li, L., Ni, H.i., "Simulation and Analysis of a Single-Effect Thermal Vapor Compression Desalination System at Variable Operation Conditions", Chem. Eng. Technol. Vol. 30, pp. 1633-1641, 2007. [12] Kamali, R.K., Mohebinia, S., "Experience of Design and Optimization of Multi-Effects Desalination Systems in Iran", Desalination 222, pp. 639-645, 2008. [13] Kamali, R.K., Abbassi, A., Sadough Vanini, S.A, Saffar Avval, M., "Thermodynamic Design and Parametric Study of MED-TVC", Desalination, Vol. 222, pp. 596-604, 2008. [14] Ameri, M., Seif Mohammadi, S., Hosseini, M., Seifi, M., "Effect of Design Parameters on Multi-Effect Desalination System Specifications", Desalination 245, pp. 266-283, 2009. [15] Trostmann, A., "Improved Approach to Steady State Simulation of Multi-Effect Distillation Plants", Desalination and Water Treatment, Vol. 7, pp. 93-110, 2009. [16] Shakib, S.E.,. Amidpour, M., Aghanajafi, C., "Simulation and Optimization of Multi Effect Desalination Coupled to a Gas Turbine Plant with HRSG Consideration", Desalination, Vol, 285, pp. 366-376, 2012. [17] Shakib, S.E., Amidpour, M., Aghanajafi, C., "A New Approach for Process Optimization of a METVC Desalination System", Desalination and Water Treatment, Vol. 37, pp. 1-13, 2012. [18] Fiorini, P., Sciubba, E., "Thermoeconomic Analysis of a MSF Desalination Plant", Desalination, Vol. 182, pp. 39-51, 2005. [19] Sayyaadi, H., Saffari, A., "Thermoeconomic Optimization of Multi Effect Distillation Desalination Systems", Applied Energy, Vol. 87, pp. 1122–1133, 2010. [20] Sayyaadi, H., Saffari, A., Mahmoodian, A., "Various Approaches in Optimization of Multi Effects Distillation Desalination Systems using a Hybrid Meta-Heuristic Optimization Tool", Desalination, Vol. 254, pp. 138-148, 2010. [21] Wang, Y., Lior, N., "Performance Analysis of Combined Humidified Gas Turbine Power Generation and Multi-Effect Thermal Vapor Compression Desalination Systems: Part 1: The Desalination Unit and its Combination with a Steam-Injected Gas Turbine Power System", Desalination, Vol. 196, pp. 84-104, 2006. [22] Wang, Y., Lior, N., "Performance Analysis of Combined Humidified Gas Turbine Power Generation and Multi-Effect Thermal Vapor Compression Desalination Systems: Part 2: The Evaporative Gas Turbine Based System and Some Discussions", Desalination, Vol. 207, pp. 243-256, 2007. [23] Korakiantis, T., Wilson, D.G., "Methods for prediction the Performance of Bryton-Cycle Engines.", ASME Journal of Engineering for Gas Turbines and Power, Vol. 166, pp. 381-388, 1994. [24] Kamali, R.K., Abbassi, A., Sadough, S.A.," A Simulation Model and Parametric Study of MED–TVC Process". In: EDS International Conference, EuroMed, p. 203, 2006. [25] Arzu S¸ E., Yakuta, S. Kalogiroub. "Exergy Analysis of Lithium Bromide/Water Absorption Systems". Renewable Energy, Vol. 30, pp. 645-657, 2005.