بررسی تجربی روش‌های مختلف بهبود مدیریت حرارتی باتری‌های لیتیوم-یون با استفاده از تغییر فاز مایع-بخار

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه تحقیقاتی انرژی و محیط‌زیست، دانشکده فنی و مهندسی، دانشگاه آیت الله بروجردی (ره)، بروجرد، ایران

چکیده

در این مطالعه، یک روش جدید برای مدیریت حرارتی باتری‌های لیتیوم-یون با استفاده از تغییر فاز مایع-بخار بررسی شده است. یک بستۀ باتری متشکل از ۱۲ سلول استوانه‌ای ۱۸۶۵۰ در یک محفظۀ غوطه‌ور در مبرد R-141b قرار داده شد و اثر چهار پارامتر کلیدی شامل ارتفاع غوطه‌وری مبرد (سه ارتفاع 0%، 50% و 100% ارتفاع سلول‌های باتری)، نرخ دشارژ (1C تا 4C)، نوع روش خنک‌کاری (بدون خنک‌کاری، استفاده از جابه‌جایی آزاد و جابه‌جایی اجباری با فن)، و دمای اولیۀ هیدروژل (10 و 24 درجۀ سانتی‌گراد) بر عملکرد حرارتی باتری‌ها به‌صورت تجربی مورد بررسی قرار گرفت. نتایج نشان داد که افزایش ارتفاع غوطه‌وری و استفاده از هیدروژل با دمای اولیۀ پایین، بیشترین کاهش دما و فشار نهایی محفظه را به همراه داشته است. در شرایط دشارژ 4C، دمای حداکثری سلول‌ها در حالت غوطه‌وری کامل نسبت به حالت بدون خنک‌کاری 31 درجۀ سانتی‌گراد کاهش یافت. همچنین، استفاده از هیدروژل فشار نهایی محفظه را تا 4/44 درصد کاهش داده است. در حالت بدون خنک‌کاری، دمای حداکثری در نرخ دشارژ 4C به بیش از 71 درجۀ سانتی‌گراد رسید که بالاتر از حد ایمنی عملکرد باتری است. اما با استفاده از غوطه‌وری کامل، این مقدار به 40 درجۀ سانتی‌گراد و با استفاده از هیدروژل با دمای اولیۀ 10 درجه به حدود 5/34 درجۀ سانتی‌گراد کاهش یافت.

کلیدواژه‌ها

موضوعات


[1] Choudhari V. G., Dhoble D. A. S., Sathe T. M., "A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle", J. Energy Storage, Vol. 32, p. 101729, 2020, https://doi.org/10.1016/j.est.2020.101729.
[2] Jiang, K., Liao, G., Zhang, J. E, F., Chen, J., Leng, E., "Thermal management technology of power lithium-ion batteries based on the phase transition of materials: A review", J. Energy Storage, Vol. 32, p. 101816, 2020, https://doi.org/10.1016/j.est.2020.101816.
[3] Fayaz, H., Afzal, A., Samee, A. D. M., Soudagar, M. E. M., Akram N., Mujtaba M. A., Jilte R. D., Islam M. T., Ağbulut Ü., and Saleel C. A., "Optimization of Thermal and Structural Design in Lithium-Ion Batteries to Obtain Energy Efficient Battery Thermal Management System (BTMS): A Critical Review", Arch. Comput. Methods Eng., Vol. 29, No. 1, pp. 129–194, 2022, https://doi.org/10.1007/s11831-021-09571-0.
[4] Zhuang, W., Liu, Z., Su, H., Chen, G., "An intelligent thermal management system for optimized lithium-ion battery pack", Appl. Therm. Eng., Vol. 189, p. 116767, 2021, https://doi.org/10.1016/j.applthermaleng.2021.116767.
[5] Sharifi, N., Shabgard, H., Millard, C., Etufugh, U., "Hybrid Heat Pipe-PCM-Assisted Thermal Management for Lithium-Ion Batteries", Batteries, Vol. 11, No. 2. 2025. https://doi.org/10.3390/batteries11020064.
[6] Keyhani-Asl, A., Perera, N., Lahr, J., Hasan, R., "Innovative hybrid battery thermal management system incorporating copper foam porous fins and layers with phase change material and liquid cooling", Appl. Therm. Eng., Vol. 268, p. 125848, 2025, https://doi.org/10.1016/j.applthermaleng.2025.125848.
[7] Yao, Z., Yin, R., Peng, Q., "A review on thermal management system and employed biomimetic technology to enhance lithium-ion battery packs for electric vehicles", J. Energy Storage, Vol. 111, p. 115399, 2025, https://doi.org/10.1016/j.est.2025.115399
[8] Najafi, A., Jadidi, A. M., Rashidi, S., "Experimental study on a thermal management system with air and thermoelectric module designed for lithium-ion battery", J. Energy Storage, Vol. 111, p. 115403, 2025, https://doi.org/10.1016/j.est.2025.115403.
[9] Li, Y., Bian, X., Li, H., Yu, H., Tao, H., "Thermal management of electric bus batteries simulation study using heat pipes and phase change materials under varying passenger capacity and actual driving routes", Appl. Therm. Eng., Vol. 273, p. 126402, 2025, https://doi.org/10.1016/j.applthermaleng.2025.126402.
[10] Diao, X., Wang, P., Li, Y., Chen, X., "Multiple Hydrogen-Bond Cross-Linking Solid–Solid Phase Change Materials for Batteries’ Thermal Management", EcoEnergy, Vol. 3, No. 2, pp. 1-3, 2025, https://doi.org/10.1002/ece2.70002.
[11] Yi, F., Gan, Y., Li, R., "Thermal performance analysis of L-shaped ultra-thin vapor chamber for lithium battery thermal management considering tilt angle and vibration", Energy, Vol. 320, p. 135477, 2025, https://doi.org/10.1016/j.energy.2025.135477.
[12] Li, J., Chen, M., Zeng, X., Song, D., "Research on the thermal management performance of battery module with heat pipe in the full-scenarios and multiple dimensions", Appl. Therm. Eng., Vol. 263, p. 125392, 2025, https://doi.org/10.1016/j.applthermaleng.2024.125392.
[13] Zhang, L., Shang, B., Sun, W., Tao, Y., Li, X., Tu, J., "Data-driven optimization of nano-PCM arrangements for battery thermal management based on Lattice Boltzmann simulation", Energy, Vol. 313, p. 133670, 2024, https://doi.org/10.1016/j.energy.2024.133670.
[14] song, X., Sun, N., Cao, H., Zhu, G., Li, M., Liu, X., Rao, Z., "Research on a power battery thermal management system using direct refrigerant cooling with parallel serpentine flow paths", Energy Storage Sci. Technol., Vol. 13, No. 8, pp. 2726, 2024, https://doi.org/10.19799/j.cnki.2095-4239.2024.0268.
[15] Moosavi, A., Heat transfer in ordered porous media with application to batteries, Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2024.