بررسی کارکرد موتور سنکرون مغناطیس دائم در خودروهای الکتریکی براساس اینورتر شبه‌منبع Z دوجهتۀ بهبود‌یافته

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

هنگام کار کردن با سرعت پایه، موتور سنکرون مغناطیس دائم معمولاً با روش‌های شار شدن کنترل می‌شود. عملکرد این روش کنترلی بدین صورت است که با تولید جریان، مغناطیس‌زدایی محور d محقق می‌شود؛ اما این روش دارای بازده پایین است که عیب این روش کنترلی تلقی می‌شود. کم بودن بازده باعث محدود شدن بازده ولتاژ اینورتر، سطح جریان و درنهایت قدرت خروجی موتور می‌شود. در این مقاله یک سیستم درایو مغناطیس دائم متغیر با ولتاژ لینک DC را براساس اینورتر شبه‌منبع امپدانس بهبود‌یافته پیشنهاد شده است. اینورتر پیشنهادی برای سیستم درایو مغناطیس دائم نسبت به اینورتر‌های قبلی مورد استفاده در چنین سیستمی از لحاظ بهرۀ خروجی ولتاژ و جریان ورودی بهبودیافته است. علاوه‌بر این، تجزیه و تحلیل مد عملکردی و معادلات دینامیکی، طراحی کنترل‌کننده و تحقق یک اینورتر شبه‌منبع امپدانس دوطرفۀ بهبود‌یافته برای کاربرد در خودروهای الکتریکی نیز ارائه شده است. تجزیه و تحلیل مدار نشان می‌دهد که با یک کلید دو‌طرفه در شبکۀ شبه‌منبع امپدانس، عملکرد اینورتر تحت اندوکتانس کوچک و ضریب توان کم می‌تواند بهبود یابد. در روش کنترل شار شدن زمانی که در ولتاژ ورودی مدار اختلالی ایجاد شود، لینک DC  مستعد نوسان می‌شود که خود عیب تلقی می‌شود؛ بنابراین برای غلبه بر این مشکل، یک کنترل‌کنندۀ ولتاژ اختصاصی برای حذف اختلال و تثبیت ولتاژ لینک DC در یک حالت غیر‌اتصال‌کوتاه طراحی شده است. نتایج شبیه‌سازی برای اثبات عملکرد مدار و اثربخشی روش کنترل پیشنهادی ارائه شده‌اند.

کلیدواژه‌ها

موضوعات


[1] Wang, R., Jia, X., Dong, S., Zhang, Q., "PMSM driving system design for electric vehicle applications based on bi-directional quasi-Z-source inverter", 13th IEEE Conference on Industrial Electronics and Applications (ICIEA) IEEE., pp. 1733-1738, 2018.
[2] Peng, F. Z., "Z-source inverter", IEEE Transactions on industry applications, Vol. 39, No. 2, pp.504-510, 2003.
[3] Babaei, E., Asl, E. S., "High voltage gain halfbridge Z-source inverter with low voltage stress on capacitors", IEEE Trans., Vol. 64, No. 1, pp. 191–197, 2017.
[4] Zhu, X., Ye, K., Jiang, L., Jin, K., Zhou, W., Zhang, B., "Nonisolated single-phase quadratic switched-boost inverter with continuous input current and step-up inversion capability", IEEE Journal of Emerging and Selected Topics in Industrial Electronics, Vol. 4, No,  1, pp. 276-287, 2023.
[5] Tran, Q. V., Chun, T. W., Ahn, J. R., Lee, H. H., "Algorithms for controlling both the dc boost and ac output voltage of Zsource inverter", IEEE Trans, Vol. 54, No. 5, pp. 2745–2750, 2007.
[6] Asl, E. S., Babaei, E., Sabahi, M., Nozadian, M. H. B., Cecati, C., "New half-bridge and fullbridge topologies for a switched-boost inverter with continuous input current", IEEE Trans, Vol. 65, No. 4, pp. 3188-3197, 2018.                                       
[7] Peng, F.Z., Joseph, A., Wang, J., Shen, M., Chen, L., Pan, Z., Ortiz-Rivera, E., Huang, Y., "Z-source inverter for motor drives", IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 857–863, 2005.                                                                                        
[8] Peng, F.Z., Shen, M., Holland, K., "Application of Zsource inverter for traction drive of fuel cell-battery hybrid electric vehicles", IEEE Trans. Power Electron., Vol. 22, No. 3, pp. 1054–1061, 2007.                                                                             
[9] Huang, Y., Shen, M., Peng, F.Z., Wang, J., "Z-source inverter for residential photovoltaic systems", IEEE Trans. Power Electron., Vol. 21, No. 6, pp. 1776–1782, 2006.                      
[10] Loh, P.C., Vilathgamuwa, D.M., Gajanayake, G.J., Lim, Y.R., Teo, C.W., "Transient modeling and analysis of pulse-width modulated Z-source inverter", IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 498–507, 2007.
[11] Liu, J.B., Hu, J.G., Xu, L.Y., "Dynamic modeling and analysis of Z-source converter-derivation of ac small signal model and design-oriented analysis", IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 1786–1796, 2007.
[12] Jelodar, Y. J., Salari, O., Youssef, M. Z., Ebrahimi, J., Bakhshai, A., "A Novel Control Scheme for Traction Inverters in Electric Vehicles With an Optimal Efficiency Across the Entire Speed Range", IEEE Access., Vol. 12, pp. 25906-25916, 2024.
[13] Gao, F., Loh, P.C., Li, D., Blaabjerg, F., "Asymmetrical and symmetrical embedded Z-source inverters", IET Power Electron., Vol. 4, No. 2, pp. 181– 193, 2011.
[14] Anderson, J., Peng, F.Z., "Four quasi-Z-source inverters", IEEE Power Electronics Specialists Conference IEEE.,  pp. 2743-2749, 2008.    
[15] Yang, S., Peng, F. Z., Lei, Q., Inoshita, R., Qian, Z., "Current-fed quasi-Z-source inverter with voltage Buck–Boost and regeneration capability", IEEE Transaction., Vol. 47, No. 2, pp. 882-892, 2010.                                                            
[16] Guo, F., Fu, L., Lin, C. H., Li, C., Choi, W., Wang, J., "Development of an 85-kW bidirectional quasi-Z-source inverter with DC-link feed-forward compensation for electric vehicle applications", IEEE Transactions on Power Electronics., Vol. 28, No. 12, pp. 5477-5488, 2013.                                                   
[17] Ahmad, J., Zaid, M., Sarwar, A., Tariq, M., Sarwer, Z., "A new transformerless quadratic boost converter with high voltage gain", Smart Science, Vol 8, No. 3 , pp. 163-183, 2020.
[18] Zhou, Y., Li, H., Li, H., "A single-phase PV quasi-Z-source inverter with reduced capacitance using modified modulation and double-frequency ripple suppression control", IEEE Transactions on Power Electronics, Vol. 31, No. 3, pp.2166-2173, 2015.               
[19] Zhang, X., Zhang, C., Wang, Z., Rodríguez, J., "Motor-Parameter-Free Model Predictive Current Control for PMSM Drives", IEEE Transactions on Industrial Electronics., Vol. 71, No. 6, pp. 5443-5452, 2023.                                            
[20] Liu, P., Liu, H. P., "Permanent-magnet synchronous motor drive system for electric vehicles using bidirectional Z-source inverter", IET Electrical Systems, Vol. 2, No. 4 ,pp. 178-185, 2012.                                                                                                             [21] Zhang, X., Liu, Z., Zhang, P., Zhang, Y., "Model Predictive Current Control for PMSM Drives Based on Nonparametric Prediction Model", IEEE Transactions on Transportation Electrification, Vol. 10, No. 1 , pp. 711-719, 2024.
[22] Jie, L., Baoming, G., Liwen, Z., "Modeling and Control of the Quasi-Z-source Inverter", Electric Drive, Vol. 40, No. 4, pp. 36-40, 2010.
[23] Xing, Z., Xinquan, T., Shuying, Y., "Study on the Three-phase Reversible Z-source Converter for Battery Charge-discharge System [J]", Power Electronics. Vol. 06, pp. 18-20, 2009.
[24] Xiao, S., Shi, T., Li, X., Wang, Z., Xia, C., "Single-current-sensor control for PMSM driven by quasi-Z-source inverter", IEEE Transactions on Power Electronics, Vol. 34, No. 7, pp. 7013-7024, 2018.                                 
[25] Wu, J., Wang, J., Gan, C., Sun, Q., Kong, W., "Efficiency optimization of PMSM drives using field-circuit coupled FEM for EV/HEV applications", IEEE Access, Vol. 6, pp. 15192-15201, 2018.                                                      
[26]Yang, H., Yang, J., Zhang, X., "DC-bus capacitor maximum power discharge strategy for EV-PMSM drive system with small safe current", IEEE Access. Vol. 9, pp. 132158-132167, 2021.                                              
[27] Zhou, G. H., Qiao, M. Z., Zhang, X. F., Xie, J. H., Hao, Q. L., Wan, C., Zhou, Y., "Development of a low-[14] speed high-efficiency PMSM and its drive system for electric windlass and mooring winch", IEEE Access, Vol. 10, pp. 70620-70629, 2022.
[28] Morales-Caporal, R., Leal-López, M. E., de Jesús Rangel-Magdaleno, J., Sandre-Hernández, O., Cruz-Vega, I., "Direct torque control of a PMSM-drive for electric vehicle applications", In 2018 International Conference on Electronics, Communications and Computers (CONIELECOMP), pp. 232-237. IEEE, 2018.                                          
[29] Zhang, J., Yao, H., Rizzoni, G., "Fault diagnosis for electric drive systems of electrified vehicles based on structural analysis", IEEE Transactions on Vehicular Technology, Vol. 66, No. 2, pp. 1027-1039, 2016.                               
[30] ARULDASS, R., HIMABINDU, S., KUMAR, Y. V., "A Three-Phase PV Quasi-Z-Source Inverter with Reduced Capacitance Using Modified Modulation and Double-Frequency Ripple Suppression Control", International Jornal of Scientific Enginereering and Technology Research, Vol. 06, No. 15, pp. 2842-2849, 2017.
[31] Peña, J. M., Díaz, E. V., "Implementation of V/f scalar control for speed regulation of a three-phase induction motor", In 2016 IEEE ANDESCON, pp. 1-4, 2016.    
[32] Sadhwani, R., Ragavan, K., "A comparative study of speed control methods for induction motor fed by three level inverter", In 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), pp. 1-6, 2016.                 
[33] Ding, S., Wang, F., "A new negative output buck–boost converter with wide conversion ratio", IEEE Trans. Ind. Electron., Vol. 64, No. 12, pp. 9322–9333, 2017.
[34] Mayo-Maldonado, J. C., Valdez-Resendiz, J. E., Garcia-Vite, P. M., Rosas-Caro, J. C., del Rosario Rivera-Espinosa, M., Valderrabano-Gonzalez, A., "Quadratic buck–boost converter with zero output voltage ripple at a selectable operating point", IEEE Transactions on Industry Applications, Vol. 55, No. 3, pp. 2813–2822, 2019.                
[35] Nguyen, M. K., Tran, T. T., "A single-phase single-stage switched-boost inverter with four switches", IEEE Transactions on Power Electronics, Vol.33, No. 8, pp.6769-6781, 2018.