تأثیر هندسۀ انژکتور حلقوی و توابع مختلف پاشش بر کارکرد موتور دیزل: یک مطالعۀ عددی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فنی و مهندسی میانه، دانشگاه تبریز، تبریز، ایران

2 گروه مهندسی مکانیک، واحد پرند، دانشگاه آزاد اسلامی، پرند، ایران

چکیده

تغییر هندسۀ دهانۀ انژکتور تأثیر عمده‌ای بر کارکرد موتور دیزل دارد. در این مطالعه، هندسۀ خروجی انژکتور از دایره‌ای به حلقوی تغییر یافته و تأثیر توابع مختلف پاشش بر کارکرد موتور دیزل بررسی شده است. شبیه‌سازی عددی با استفاده از کد تجاری AVL Fire انجام گردیده و با نتایج موتور Kubota 3300 مقایسه شده است. نتایج نشان می‌دهد که انژکتور حلقوی با افزایش زاویۀ پاشش، توزیع بهتر سوخت در داخل محفظۀ احتراق موتور را فراهم می‌سازد. همچنین، استفاده از تغییر آهنگ پاشش سوخت در انژکتور حلقوی نیز کارکرد موتور را بهبود می‌بخشد. بهترین عملکرد برای تابع افزایش ثابت مشاهده شده که مقدار مصرف ویژۀ سوخت به 1865/0 کیلوگرم بر کیلووات ساعت رسیده است. با اعمال توابع پاشش جدید و همچنین استفاده از انژکتور حلقوی ارائه‌شده، توان نیز افزایش می‌یابد. برای ‌مثال، برای تابع افزایش ثابت (تابع چهارم)، اگرچه مقدار پاشش سوخت در هر چرخۀ موتور 8/8 درصد کاهش می‌یابد، توان به‌ترتیب 6/13 و 5/13 درصد افزایش می‌یابد. ازسوی دیگر، درحالی‌که با تغییر نوع انژکتور و استفاده از توابع پاشش، مقدار آلایندۀ NO اندکی افزایش می‌یابد، دودۀ تولیدشده در ابتدای فرایند احتراق، پیش از پایان کورس توان به‌خوبی اکسید می‌شود و کسر جرمی آن به کمتر از 000002/0 می‌رسد.

کلیدواژه‌ها

موضوعات


[1] Kozina, A., Radica, G., Nižetić, S., "Analysis of methods towards reduction of harmful pollutants from diesel engines", Journal of Cleaner Production, Vol. 262, p.121105, July. 2020, https://doi: 10.1016/j.jclepro.2020.121105.
[2] Leach, F., Kalghatgi, G., Stone, R., Miles, P., "The scope for improving the efficiency and environmental impact of internal combustion engines", Transportation Engineering, Vol. 1, p.100005, June. 2020, https://doi:10.1016/j.treng.2020.100005.
[3] Mohan, B., Yang, W., kiang Chou, S., "Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review", Renewable and Sustainable Energy Reviews, Vol. 28, pp.664-676, December. 2013, https://doi:10.1016/j.rser.2013.08.051.
[4] Medina, M., Bautista, A., Wooldridge, M., Payri, R., "The effects of injector geometry and operating conditions on spray mass, momentum and development using high-pressure gasoline", Fuel, Vol. 294, p.120468, June. 2021, https://doi: 10.1016/j.fuel.2021.120468.
[5] Payri, R., Viera, J.P., Gopalakrishnan, V., Szymkowicz, P.G., "The effect of nozzle geometry over the evaporative spray formation for three different fuels", Fuel, Vol. 188, pp.645-660, January. 2017, https://doi: 10.1016/j.fuel.2016.10.064.
[6] Pulkrabek, W.W., Engineering fundamentals of the internal combustion engine, 2004.
[7] Zhang, Y., Nishida, K., Nomura, S., Ito, T., "Spray characteristics of group-hole nozzle for D.I. diesel engine", SAE Technical Paper Series, Oct. 2003, https://doi: 10.4271/2003-01-3115.
[8] Park, S.W., Suh, H.K., Lee, C.S., Abani, N., Reitz, R.D, "Modeling of group-hole-nozzle sprays using grid-size-, hole-location-, and time-step-independent models", Atomization and Sprays, Vol. 19, No. 6, pp. 567–582, Jan. 2009, https://doi: 10.1615/atomizspr.v19.i6.50.
[9] Park, S.W. and Reitz, R.D., "Optimization of fuel/air mixture formation for stoichiometric diesel combustion using a 2-spray-angle group-hole nozzle", Fuel, Vol. 88, No. 5, pp. 843–852, May 2009, https://doi: 10.1016/j.fuel.2008.10.028.
[10] Gao, J., Matsumoto, Y., Namba, M., Nishida, K., "An investigation of mixture formation and in-cylinder combustion processes in direct injection diesel engines using group-hole nozzles", International Journal of Engine Research, Vol. 10, No. 1, pp. 27–44, Feb. 2009, https://doi: 10.1243/14680874jer02108.
[11] Siebers, D., Higgins, B., "Flame Lift-Off on Direct-Injection diesel sprays under quiescent conditions", SAE Technical Paper Series, Mar. 2001, https://doi: 10.4271/2001-01-0530.
[12] Bergstrand, P., Försth, M., Denbratt, I., "The influence of orifice diameter on flame lift-off length", Zaragoza, Vol. 9, p.11, 2002.
[13] Yin, B., Xu, B., Jia, H., Yu, S., "The Effect of Elliptical Diesel Nozzles on Spray Liquid-Phase Penetration under Evaporative Conditions", Energies, Vol. 13, No. 9, p. 2234, May 2020, https://doi: 10.3390/en13092234.
[14] Sharma, P., Fang, T., "Breakup of liquid jets from non-circular orifices", Experiments in Fluids, Vol. 55, No. 2, Jan. 2014, https://doi: 10.1007/s00348-014-1666-z.
[15] Hashiehbaf, A., Romano, G.P., "A phase averaged PIV study of circular and non-circular synthetic turbulent jets issuing from sharp edge orifices", International Journal of Heat and Fluid Flow, Vol. 82, p. 108536, Apr. 2020, https://doi: 10.1016/j.ijheatfluidflow.2020.108536.
[16] Sharma, P., Fang, T., "Spray and atomization of a common rail fuel injector with non-circular orifices", Fuel, Vol. 153, pp. 416–430, Aug. 2015, https://doi: 10.1016/j.fuel.2015.02.119.
[17] Migliaccio, M., Montanaro, A., Beatrice, C., Napolitano, P., Allocca, L., Fraioli, V., "Experimental and numerical analysis of a high-pressure outwardly opening hollow cone spray injector for automotive engines", Fuel, Vol. 196, pp. 508–519, May 2017, https://doi: 10.1016/j.fuel.2017.01.020.
[18] Jeon, J., Moon, S., "Ambient density effects on initial flow breakup and droplet size distribution of hollow-cone sprays from outwardly-opening GDI injector", Fuel, Vol. 211, pp. 572–581, Jan. 2018, https://doi: 10.1016/j.fuel.2017.09.016.
[19] Gao, H., Zhang, F., Zhang, Z., Wang, E., Liu, B., "Experimental investigation on the spray characteristic of air-assisted hollow-cone gasoline injector", Applied Thermal Engineering, Vol. 151, pp. 354–363, Mar. 2019, https://doi: 10.1016/j.applthermaleng.2019.02.029.
[20] Du, J., Cenker, E., Badra, J., Sim, J., Roberts, W.L., "Characteristics of a non-reacting spray from an outwardly opening hollow-cone injector with high-reactivity gasolines", Fuel, Vol. 268, p. 117293, May 2020, https://doi: 10.1016/j.fuel.2020.117293.
[21] Wu, H., Zhang, F., Zhang, Z., Gao, H., "Experimental investigation on the spray characteristics of a self-pressurized hollow cone injector", Fuel, Vol. 272, p. 117710, Jul. 2020, https://doi: 10.1016/j.fuel.2020.117710.
[22] Gimeno, J., Marti-Aldaravi, P., Carreres, M., Cardona, S., "Experimental investigation of the lift-off height and soot formation of a spray flame for different co-flow conditions and fuels", Combustion and Flame, Vol. 233, p. 111589, Nov. 2021, https://doi: 10.1016/j.combustflame.2021.111589.
[23] Soundararajan, P.R., Durox, D., Renaud, A., Vignat, G., Candel, S., "Swirler effects on combustion instabilities analyzed with measured FDFs, injector impedances and damping rates", Combustion and Flame, Vol. 238, p. 111947, Apr. 2022, https://doi: 10.1016/j.combustflame.2021.111947.
[24] Lee, C.S., Choi, N.J., "Effect of air injection on the characteristics of transient response in a turbocharged diesel engine", International Journal of Thermal Sciences, Vol. 41, No. 1, pp. 63–71, Jan. 2002, https://doi: 10.1016/s1290-0729(01)01304-7.
[25] Nishida, K., Zhang, W., Manabe, T., "Effects of micro-hole and ultra-high injection pressure on mixture properties of DI diesel spray", SAE Transactions, pp. 421-429, 2007.
[26] Celıkten, I., "An experimental investigation of the effect of the injection pressure on engine performance and exhaust emission in indirect injection diesel engines", Applied Thermal Engineering, Vol. 23, No. 16, pp. 2051–2060, Nov. 2003, https://doi: 10.1016/s1359-4311(03)00171-6.
[27] Das, P., Subbarao, P.M.V., Subrahmanyam, J.P., "Control of combustion process in an HCCI-DI combustion engine using dual injection strategy with EGR", Fuel, Vol. 159, pp. 580–589, Nov. 2015, https://doi: 10.1016/j.fuel.2015.07.009.
[28] Jeftić, M., Zheng, M., "A study of the effect of post injection on combustion and emissions with premixing enhanced fueling strategies", Applied Energy, Vol. 157, pp. 861–870, Nov. 2015, https://doi: 10.1016/j.apenergy.2015.02.052.
[29] Park, S.H., Yoon, S.H., "Injection strategy for simultaneous reduction of NOx and soot emissions using two-stage injection in DME fueled engine", Applied Energy, Vol. 143, pp. 262–270, Apr. 2015, https://doi: 10.1016/j.apenergy.2015.01.049.
[30] Macian, V., Payri, R., Ruiz, S., Bardi, M., Plazas, A.H., "Experimental study of the relationship between injection rate shape and Diesel ignition using a novel piezo-actuated direct-acting injector", Applied Energy, Vol. 118, pp. 100–113, Apr. 2014, https://doi: 10.1016/j.apenergy.2013.12.025.
[31] Mohan, B., Yang, W., Yu, W., Tay, K.L., Chou, S.K., "Numerical investigation on the effects of injection rate shaping on combustion and emission characteristics of biodiesel fueled CI engine", Applied Energy, Vol. 160, pp. 737–745, Dec. 2015, https://doi: 10.1016/j.apenergy.2015.08.034.
[32] Tay, K.L., Yang, W., Zhao, F., Yu, W., Mohan, B., "A numerical study on the effects of boot injection rate-shapes on the combustion and emissions of a kerosene-diesel fueled direct injection compression ignition engine", Fuel, Vol. 203, pp. 430–444, Sep. 2017, https://doi: 10.1016/j.fuel.2017.04.142.
[33] Wang, Z., Wyszynski, M.L., Xu, H., Abdullah, N.R., Piaszyk, J., "Fuel injection and combustion study by the combination of mass flow rate and heat release rate with single and multiple injection strategies", Fuel Processing Technology, Vol. 132, pp. 118–132, Apr. 2015, https://doi: 10.1016/j.fuproc.2014.11.024.
[34] Özkan, M., Özkan, D.B., Özener, O., Yılmaz, H., "Experimental study on energy and exergy analyses of a diesel engine performed with multiple injection strategies: Effect of pre-injection timing", Applied Thermal Engineering, Vol. 53, No. 1, pp. 21–30, Apr. 2013, https://doi: 10.1016/j.applthermaleng.2012.12.034.
[35] Roh, H.G., Lee, D., Lee, C.S., "Impact of DME-biodiesel, diesel-biodiesel and diesel fuels on the combustion and emission reduction characteristics of a CI engine according to pilot and single injection strategies", Journal of the Energy Institute, Vol. 88, No. 4, pp. 376–385, Nov. 2015, https://doi: 10.1016/j.joei.2014.11.005.
[36] Benajes, J., Molina, S., García, A., Monsalve-Serrano, J., Durrett, R., "Performance and engine-out emissions evaluation of the double injection strategy applied to the gasoline partially premixed compression ignition spark assisted combustion concept", Applied Energy, Vol. 134, pp. 90–101, Dec. 2014, https://doi: 10.1016/j.apenergy.2014.08.008.
[37] Jeon, J., Park, S., "Effects of pilot injection strategies on the flame temperature and soot distributions in an optical CI engine fueled with biodiesel and conventional diesel", Applied Energy, Vol. 160, pp. 581–591, Dec. 2015, https://doi: 10.1016/j.apenergy.2015.09.075.
[38] Lefebvre, A. H., McDonell, V.G., Atomization and sprays, 2017. https://doi: 10.1201/9781315120911.
[39] Clark, C.J., Dombrowski, N., "Aerodynamic instability and disintegration of inviscid liquid sheets", Proceedings of the Royal Society of London, Vol. 329, No. 1579, pp. 467–478, Sep. 1972, https://doi: 10.1098/rspa.1972.0124.
[40] Brink, A., Mueller, C., KILPINEN, P.A., Hupa, M., "Possibilities and limitations of the eddy break-up model", Combustion and flame, Vol. 123, No. 1-2, pp.275-279, 2000, https://doi:10.1016/S0010-2180(00)00146-2.
[41] Nishida, K., Hiroyasu, H., "Simplified three-dimensional modeling of mixture formation and combustion in a DI diesel engine", SAE transactions, pp.276-293, 1989.
[42] Dukowicz, J.K., "A particle-fluid numerical model for liquid sprays", Journal of Computational Physics, Vol. 35, No. 2, pp. 229–253, Apr. 1980, https://doi: 10.1016/0021-9991(80)90087-x.
[43] Hassan, N.M.S., Rasul, M.G., Harch, C.A., "Modelling and experimental investigation of engine performance and emissions fuelled with biodiesel produced from Australian Beauty Leaf Tree", Fuel, Vol. 150, pp. 625–635, Jun. 2015, https://doi: 10.1016/j.fuel.2015.02.016.