مروری کوتاه بر عملکرد و کنترل ریزشبکه‌های جریان مستقیم در سیستم‌های قدرت

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی برق، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران

چکیده

ریزشبکه یک سیستم تولید و توزیع انرژی الکتریکی است. ریزشبکه‌ها شامل سیستم‌های قدرت مختلف‌اند که هرکدام ظرفیت توان مختلف دارند و نوسانات متفاوتی تولید می‌کنند. ریزشبکه‌ها با تولید توان قابل اعتماد و انعطاف‌پذیر می‌توانند ایمنی و قابلیت اطمینان الکتریکی شبکه را تضمین کنند و هزینه‌های انرژی را کاهش دهند. ریزشبکه یک سیستم قدرت کوچک دارای منابع انرژی و بارهای توزیع‌شده است که در دو حالت متصل به شبکه و جزیره‌ای می‌تواند کار کند. کنترل‌کننده در یک ریزشبکه باید انتقال یکپارچه بین حالت‌های مختلف عملکرد را فراهم کند. با بررسی مطالعات انجام‌شده، کاربرد ریزشبکه‌ها برای پاسخ‌گویی به تقاضای روبه‌رشد انرژی و حل مشکلات آلودگی محیط‌زیست گسترش پیدا کرده است. در این مقاله مروری کوتاه بر اثربخشی ریزشبکه‌های جریان مستقیم (dc) در سیستم قدرت شده است. ریزشبکه‌های dc نیازی به همگام‌سازی فرکانس و مدیریت توان راکتیو ندارند و ازنظر پایداری، انعطاف‌پذیری و پیچیدگی نسبت به ریزشبکه جریان متناوب (ac) برتری دارند. ولتاژهای منبع متغیرهایی هستند که ریزشبکۀ dc توان را کنترل می‌کنند، بنابراین باید به‌خوبی مدیریت شوند تا تنظیم ولتاژ مطلوب حاصل گردد. تقسیم‌بندی مختلفی براساس روش‌های کنترل، ساختار، عملکرد و مؤلفه‌های دیگر برای ریزشبکه بیان شده است. این مرور به‌عنوان یک بستر اولیه برای مطالعۀ تحقیقاتی در توسعۀ ریزشبکه‌های جریان مستقیم براساس کنترل متمرکز و هوشمند می‌تواند در نظر گرفته شود.

کلیدواژه‌ها

موضوعات


[1] Sen, S., Kumar, V.,  "Microgrid control: A com‌pre‌hen‌siv‌e survey", Annual Reviews in Control, Vol. 45, pp. 118-151, 2018, https://doi.org/10.1016/j.arcon‌trol.20‌18.04.012.
[2] Fayazi, H., Moazzami, M., Fani, B., Shahgholian, G., "Coordination of protection equipment in synchronous generator-based microgrids with regard to maintaining first swing stability", Journal of Intelligent Procedures in Electrical Technology, Vol. 14, No. 53, pp. 1-14, June 2023,  https://dor.org/20.1001.1.232‌23871.1402‌.14.5‌4.‌2.‌8.
[3] Zhang, T., Yue, D., O’Grady, M. J., O’Hare, G. M. P. "Transient oscillations analysis and modified control strategy for seamless mode transfer in micro-grids: A wind-PV-ES hybrid system case study", Energies, Vol. 8, No. 12, pp. 13758–13777, 2015.
[4] Taheri, D., Shahgholian, G., Mirtalaei, M.M. "Analysis, design and implementation of a high step-up multi-port non-isolated converter with coupled inductor and soft switching for photovoltaic applications", IET Generation, Transm‌ission and Distribution, Vol. 16, No. 17, pp. 3473-3497, Sept. 2022, 10.1049/gtd2.12537.
[5] Hussein Sachit, A., Fani, B., Delshad, M., Shahgholian, G., Golsorkhi Esfahani, A., "Analysis and implementation of second-order step-up converter using winding cross coupled inductors for photovoltaic applications", Journal of Solar Energy Research, Vol. 8, No. 2, pp. 1516-1525, April 2023, https://doi.org/10.22059/jser.202‌3.3572‌85.1‌291.
[6] Movahednejad, H., Zanjani, S.M.A., Moazzami, M., Shahgholian, G., "Studying and simulating the production unit system with hydro turbine and investigating the effect of transient droop compensation on the system dynamic behavior", Technovations of Electrical Engineering in Green Energy System, Vol. 1, No. 3, pp. 17-26, Dec. 2022, https://doi.org/10.30486/teeges.2022.1963559.1024.
[7] Shahgholian, G., Moazzami, M., Zanjani, S.M. , Mosavi, A., Fathollahi, A., "A hydroelectric power plant brief: Classification and application of artificial intelligence", Proceeding of the IEEE/SACI, pp. 000141-000146, Timiso‌ara, Romania, May 2023, https://doi.org/ 10.1109/SACI5‌82‌69‌.2023.10158597.
[8] Fayazi, H., Moazzami, M., Fani, B., Shahgholian, G , "A first swing stability improvement approach in microgrids with synchronous distributed generators", International Transactions on Electrical Energy Systems, Vol. 31, No. 4, Article Number: e12816, April 2021, https://doi.org/ 10.1002/2050-7038.12816.
[9] Wang, G., Song, Y., Cao, S., Duan, J., "Novel adaptive power distribution master–slave control strategy for a biogas–solar–wind battery islanded microgrid based on a microturbine", Electric Power Systems Research, Vol. 224, Article Number: 109743, Nov. 2023, https://doi.org/10.1‌016/j.epsr.2023.109743.
[10] Aghadavoodi, E., Shahgholian, G., "A new practical feed-forward cascade analyze for close loop identification of combustion control loop system through RANFIS and NARX", Applied Thermal Engineering, Vol. 133, pp. 381-395, March 2018, https://doi.org/10.1016/j.applthermaleng.2018.01.075.
[11] Bagheri, S., Moradi-CheshmehBeigi, H., "DC microgrid voltage stability through inertia enhancement using a bidirectional dc-dc converter", Proceeding of the IEEE/IWEC, pp. 1-5, Shahrood, Iran, May 2021, https://doi.org/10.1109/IWEC52400.2021.9467032.
[12] Nandanoori, S.P., Kundu, S., Du,W., Tuffner, F.K., Schneider, K.P., "Distributed small-signal stability conditions for inverter-based unbalanced microgrids", IEEE Trans. on Power Systems, Vol. 35, No. 5, pp. 3981-3990, Sept. 2020, https://doi.org/ 10.1109/TPWRS.20‌20.2982795.
[13] Fani,B., Shahgholian, G., Alhelou, H.H., Siano, P., "Inverter-based islanded microgrid: A review on technologies and control", e-Prime- Advances in Electrical Engineering, Electronics and Energy, Vol. 2, Article Number: 100068, 2022, https://doi.org/10.101‌6/j.pr‌ime.2022.100068.
[14] Siti, M.W., Mbungu, N.T., Tungadio, D.H., Banza, B.B., Ngoma, L., "Application of load frequency control method to a multi-microgrid with energy storage system", Journal of Energy Storage, Vol. 52, Article Number: 104629, Aug. 2022, https://doi.org/10.10‌16/j.est.20‌22.104629.
[15] Hemmati, R., "Demand management in off-grid 100% renewable energy microgrid integrated with electric vehicle charging station based on battery swappin",  Energy Engineering and Management, Vol. 13, No. 3, pp. 16-31, Dec. 2023, https://doi.org/ 10.22052/eem.2023.‌25‌2837.1‌011.
[16] Rajaguru, V., Annapoorani, K.I., "Virtual synchronous ge‌ner‌ator based superconducting magnetic energy storage unit for load frequency control of micro-grid using African vulture optimization algorithm", Journal of Energy Storage, Vol. 65, Article Number: 107343, Aug. 2023, https://doi.o‌rg‌/10.10‌16/j.est.2023.107343.
[17] Siad, S.B., Malkawi, A., Damm, G., Lopes, L., Dol, L.G., "Nonlinear control of a dc microgrid for the integration of distributed generation based on different time scales", International Journal of Electrical Power and Energy Systems, Vol. 111, pp. 93-100, Oct. 2019, https://doi.or‌g/1‌‌0.10‌1‌‌6/j.ijepes.2019.03.073.
[18] Kaur, S., Dwivedi, B., "Power quality issues and their mitigation techniques in microgrid system- A review", Proceeding of the IEEE/IICPE, pp. 1-4, Patiala, India, Nov. 2016, https://doi.org/ 10.1109/IICPE.2016‌.80795‌43.
[19] Werth, A., André, A., Kawamoto, D., Morita, T., Tajima, S., Tokoro, M., Yanagidaira, D., Tanaka, K., "Peer-to-peer control system for dc microgrids", IEEE Trans. on Smart Grid, Vol. 9, No. 4, pp. 3667-3675, July 2018, https://doi.org/ 10.1109/TSG.2016.2638462.
[20] Locment, F., Sechilariu, M., "Modeling and Simulation of dc microgrids for electric vehicle charging stations", Energies, Vol. 8, pp. 4335-4356, May 2015, https://doi.‌org/10.3390/e‌n8‌054‌335.
[21] Roslan, M.F., Hannan, M.A., Ker, P.J., Mannan, M.,  Muttaqi, K.M., Mahlia, T.M.I., "Microgrid control methods toward achieving sustainable energy management: A bibliometric analysis for future directions", Journal of Cleaner Production, Vol. 348, Article Number: 131340, May 2022, https://doi.org/1‌0.101‌6/j.jclep‌ro.2022.131340.
[22] Tazi, K., Abbou, F.M., Abdi, F., "Multi-agent system for microgrids: Design, optimization and perfor‌ma‌n‌ce", Artificial Intelligence Review, Vol. 53, pp. 1233–1292, 2020.
[23] Dizioli, F.A.S., Barra, P.H.A., Menezes, T.S., Lacerda, V.A., Coury, D.V., Fernandes, R.A.S., "Multi-agent system-based microgrid protection using angular variation: An embedded approach", Electric Power Systems Research, Vol. 220, Article Number: 109324, July 2023, https://doi.org/10.10‌16/j.epsr.2023.109324.
[24] Afrin, N., Yang, F., Lu, J., "Voltage support strategy for PV inverter to enhance dynamic voltage stability of islanded microgrid", International Journal of Electrical Power and Energy Systems, Vol. 121, Article Number: 106059, Oct. 2020, https://doi.org/ 10.1016/j.ijepes.2‌020.106059.
[25] Shahparasti, M., Mohamadian, M., Baboli,  P.T.,  Yazdianp, A., "Tow‌a‌rd power quality management in hybrid ac–dc mi‌cr‌ogrid using LTC-L utility inte‌ractive in‌verter: load voltage–grid current tradeo‌ff", IEEE Trans. on Smart Grid, Vol. 8, No. 2, pp. 857-867, March 2017.
[26] Ma, W.J., Wang, J., Lu, X., Gupta, V., "Optimal operation mode selection for a dc microgrid", IEEE Trans. on Smart Grid, Vol. 7, No. 6, pp. 2624-2632, Nov. 2016, https://doi.org/ 10.1109/TSG.2016.2516566.
[27] Zhao, J., Dörfler, F., "Distributed control and optimization in dc microgrids", Automatica, Vol. 61, pp. 18-26, Nov. 2015, https://doi.org/10.1016/j.auto‌mat‌ica.2015.07.015.
[28] Eberlein, S., Rudion, K., "Small-signal stability modelling, sensitivity analysis and optimization of droop controlled inverters in LV microgrids", International Journal of Electrical Power and Energy Systems, Vol. 125, Article Number: 106404, Feb. 2021, https://doi.org/ 10.1016/j.ije‌pes.20‌20.106404.
[29] Papadimitriou, C.N., Zountouridou, E.I., Hatziarg‌yriou, N.D., "Review of hierarchical control in dc microgrids", Electric Power Systems Research, Vol. 122, pp. 159-167, March 2015, https://doi.org/ 10.1016/j.epsr.2015.01.006.
[30] Gayatri, M.T.L., Parimi, A.M., Kumar, A.V.P., "A review of reactive power compensation techniques in microgrids", Renewable and Sustainable Energy Reviews, Vol. 81, pp. 1030-1036, Jan. 2018, https://doi.org/ 10.1016/j.rser.20‌17.08.006.
[31] Urquizo, J., Singh, P., Kondrath, N., Hidalgo-León, R., Soriano, G., "Using D-FACTS in microgrids for power quality improvement: A review", Proceeding of the IEEE/ETCM, pp. 1-6, Salinas, Ecuador, oct, 2017, https://doi.org/ 10.110‌9/‌ET‌CM‌.20‌17.824‌7546.
[32] Dixit, S., Singh, P., Ogale, J., Bansal, P., Sawle, Y., "Energy management in microgrids with renewable energy sources and demand response", Computers and Electrical Engineering, Vol. 110, Article Number: 108848, Sept. 2023, https://doi.org/10.1016/j.compel‌eceng.2023.108848.
[33] Zia, M.F., Elbouchikhi, E., Benbouzid, M., "Microgrids energy management systems: A critical review on methods, solutions, and prospects", Applied Energy, Vol. 222, pp. 1033-1055, July 2018.
[34] Gutierrez-Rojas, D., Nardelli, P.H.J., Mendes, G., Popovski, P., "Review of the state of the art on adaptive protection for microgrids based on communications", IEEE Trans. on Industrial Informatics, Vol. 17, No. 3, pp. 1539-1552, March 2021, https://doi.org/10.1109/TII.202‌0.3‌006845.
[35] Mirsaeidi, S., Dong, X., Shi, S., Wang, B., "AC and DC microgrids: A review on protection no.s and approaches", Journal of Electrical Engineering and Technology, Vol. 12, No. 6, pp. 2089-2098, 2017, https://doi.org/ 10.5370/JEET.2017‌.12.‌6.2‌089.
[36] Bayati, B., Hajizadeh, A., Soltani, M., "Protection in dc microgrids: A comparative review", IET Smart Grid, Vol. 1, No. 3, pp. 66-75, Oct. 2018 (https://doi.org/ 10.1049/iet-stg.2018.0035).
[37] Jing, W., Lai, C.H., Wong, S.H.W., Wong, M.L.D., "Battery-supercapacitor hybrid energy storage system in standalone dc microgrids: A review", IET Renewable Power Generation, Vol. 11, No. 4, pp. 461-469, March 2017, https://doi.org/ 10.1049/iet-rpg.2016.0500.
[38] Kaur, A., Kaushal, J., Basak, P., "A review on microgrid central controller", Renewable and Sustainable Energy Revie‌ws, Vol. 55, pp. 338-345, March 2016, https://doi.org/ 10.1016/j.rser.2015.10.141.
[39] Mahmoud, M.S., Hussain, S.A., Abido, M.A.,  "Modeling and control of microgrid: An overview", Journal of the Franklin Institute, Vol. 351, No. 5, pp. 2822-2859, May 2014, https://doi.org/ 10.1016/j.jfranklin.2014.01.016.
[40] Rosini, A., Labella, A., Bonfiglio, A., Procopio, R., Josep, Guerrero, M., "A review of reactive power sharing control techniques for islanded microgrids", Renewable and Sustainable Energy Reviews, Vol. 141, Article Number: 110745, May 2021, https://doi.org/10.1016/j.r‌ser.202‌1.11‌0745.
[41] Li, S., Oshnoei, A., Blaabjerg, F., Anvari-Moghaddam, A., "Hierarchical control for microgrids: a survey on classical and machine learning-based methods", Sustainability, Vol. 15, Article Number: 8952, June 2023, https://doi.org/10.3390/su15118952.
[42] Malik, S.M., Ai, X., Sun, Y., Zhengqi, C., Shupeng, Z., "Voltage and frequency control strategies of hybrid ac/dc microgrid: A review", IET Generation, Transmission and Distribution, Vol. 11, No. 2, pp. 303-313, Jan. 2017, https://doi.org/ 10.1049/iet-gtd.2016.0791.
[43] Shuai, Z., Sun, Y., Shen, Z.J., Tian, W., Tu, C., Li, Y., Yin, X., "Microgrid stability: Classification and a review", Renewable and Sustainable Energy Reviews, Vol. 58, pp. 167-179, May 2016, https://doi.org/ 10.1016/j.rser.2015.12.201.
[44] Zeng, Z., Yang, H., Zhao, R., "Study on small signal stability of microgrids: A review and a new approach", Renewable and Sustainable Energy Revi‌ews, Vol. 15, No. 9, pp. 4818-4828, Dec. 2011, https://doi.org/ 10.1016/‌j.rs‌e‌r.20‌1‌1.‌0‌‌7.0‌69.
[45] Shahgholian, G., "A brief review on microgrids: Operation, applications, modeling, and control", International Transactions on Electrical Energy Systems, Vol. 31, No. 6, Article Number. e12885, June 2021, https://doi.org/10.100‌2/20‌50-7038.12885.
[46] Shahgholian, G., "A brief overview of microgrid performance improvements using distributed FACTS devices", Journal of Renewable Energy and Environment, Vol. 10, No. 1, pp. 43-58, Jan. 2023, https://doi.org/10.30501/jree.2022.321435.1305.
[47] Ahmadi, S., Sadeghkhani, I., Shahgholian, G., Fani, B., Guerrero, J. M., "Protection of LVDC microgrids in grid-connected and islanded modes using bifurcation theory", IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 9, No. 3, pp. 1-8, June 2021, https://doi.org/ 10.1109/JESTPE.2019.2961903.
[48] Foroushan-Asl, S.A., Gandomkar, M., Nikoukar, J., "Optimal protection coordination in the micro-grid including inverter-based distributed generations and energy storage system with considering grid-connected and islanded modes", Electric Power Systems Research, Vol. 184, Article Number: 106317, July 2020, https://doi.org/ 10.1016/j.epsr.2020.106317.
[49] Ortiz, L., Orizondo, R. , Aguila, A., Gonzalez, J.W., Lopez, G.J., Isaac,, I., "Hybrid ac/dc microgrid test system simulation: Grid-connected mode", Heliyon, Vol. 5, No. 12, pp. 1-21, Dec. 2019.
[50] Zeng, Z., Shao, W., "Reconnection of micro-grid from islanded mode to grid-co‌nnected mode used sliding Goertzel tra‌ns‌f‌orm based filter", IET Renewable Power Gener‌ation, Vol. 11, No. 7, pp. 1041-1048, June 2017, https://doi.org/ 10.1049/iet-rpg.2016.0932.
[51] Karmi, H., Fani, B., Shahgholian, G., "Coordinated prot‌ection scheme based on virtual impedance control for loop-based microgrids", Journal of Intelligent Procedures in Electrical Technology, Vol. 12, No. 46, pp. 15-32, Sept, 2021, https://dorl.net/dor/20.1001.1.232238‌71.1400.12‌.2‌.2.0.
[52] Beheshtaein, S., Savaghebi, M., Vasquez, J.C., Guerrero, J.M., "Protection of ac and dc microgrids: Challenges, solutions and future trends", Proceeding of the IEEE/IECON, pp. 5253-5260, Yokohama,  Japan, Nov. 2015, https://doi.org/ 10.1109/IECON.2015.7392927.
[53] Taleb, M., Fani, B., Shahgholian, G., Mosavi, A., Fathollahi, A., "Maintaining fuse in the presence of distributed generation sources in the distribution network to improve protection system", Proceeding of the IEEE/SACI, pp. 000455-000460, Timisoara, Romania, May 2023, https://doi.org/ 10.1109/SACI58‌269.2023. 10158560.
[54] Teymouriyan, S., Shahgholian, G., Fani, B., "Adaptive protection based on intelligent distribution networks with the help of network factorization in the presence of distributed generation resources", Energy Engineering and Management, Vol. 12, No. 3, pp. 34-51, Nov. 2022, https://doi.org/10.22052/12.3.34.
[55] Forouzesh, M., Shen, Y., Yari, K., Siwakoti, Y.P., Blaabjerg, F., "High-efficiency high step-up DC–DC converter with dual coupled inductors for grid-connected photovoltaic systems", IEEE Trans. on Power Electronics, Vol. 33, No. 7, pp. 5967-5982, July 2018, https://doi.org/ 10.11‌09/TP‌EL.2017.274‌6750.
[56] Marei, M.I., Soliman, M.H., "A coordinated voltage and frequency control of inverter based distributed generation and distributed energy storage system for autonomous microgrids", Electric Power Com‌po‌nents and Systems, Vol. 41, No. 4, pp. 383-400, Jan. 2013, https://doi.org/10.1080/15325008.2012.749550.
[57] Guichi, A., Mekhilef, S., Berkouk, E.M., Talha, A., "Optimal control of grid-connected microgrid PV-based source under partially shaded conditions", Energy, Vol. 230, Article Number: 120649, Sept. 2021, https://doi.org/ 10.1016/j.energy.2021.120649.
[58] Han, H., Liu, Y., Sun, Y., Su, M., Guerrero, J.M., "An improved droop control strategy for reactive power sharing in isla‌nded microgrid", IEEE Trans. on Power Ele‌ctronics, Vol. 30, No. 6, pp. 3133-3141, June 2015, https://doi.org/10.1109/TPEL.2014.2332181.
[59] Hmad, J., Houari, A., Bouzid, A.E.M., Saim, A., Trabelsi, H., "A review on mode transition strategies between grid-connected and standalone operation of voltage source inverters-based microgrids", Energies, Vol. 16, Article Number: 5062, June 2023, https://doi.org/10.3390/en‌16135062.
[61] Keyvani, B., Fani, B., Karimi, H., Moazzami, M., Shahgholian, G., "Improved droop control method for reactive power sharing in autonomous microgrids", Journal of Renewable Energy and Environment, Vol. 9, No. 3, pp. 1-9, Sept. 2022, https://doi.org/ 10.30501/jree.2021.298138.‌1235.
[62] Liu, F., Liu,  W., Zha, X., Yang, H., Feng, K., "Solid-state circuit breaker snubber design for transient overvoltage suppression at bus fault interruption in low-voltage dc microgrid", IEEE Trans. on Power Electronics, Vol. 32, No. 4, pp. 3007-3021, April 2017, https://doi.org/ 10.1109/TPEL.2016.2574751.
[63] Baharizadeh, M., Karshe‌nas, H.R., Guerrero, J.M., "An improved power co‌n‌t‌rol strategy for hybrid ac-dc micro‌grids", International Journal of Electrical Power and Energy Systems, Vol. 95, pp. 364-373, Feb. 2018.
[64] Gao, F., Kang, R., Cao, J., Yang, T., "Primary and secondary control in DC microgrids: A review", Journal of Modern Power Systems and Clean Energy, Vol. 7, No. 2, pp. 227-242, March 2019, https://doi.org/ 10.1007/s40565-018-04‌6‌6‌-5.
[65] Kakigano, H., Miura, Y., Ise, T., "Low-voltage bipolar-type dc microgrid for super high quality distribution", IEEE Trans. on Power Electronics, Vol. 25, No. 12, pp. 3066-3075, Dec. 2010, https://doi.org/ 10.1109/TPEL.20‌10‌.2077682.
[67] Sur, U., Biswas, A.,  Bera, J.N., Sarkar, G., "A modified holomorphic embedding method based hybrid ac-dc microgrid load flow", Electric Power Systems Research, Vol. 182, Article 106267, May 2020.
[68] Zamani, M., Shahgholian, G., Fathollahi, A., Mosavi, A., Felde, I., "Improving interarea mode oscillation damping in multi-machine energy systems through a coordinated PSS and FACTS controller framework", Sustainability, Vol. 15, Article Number: 16070, Nov. 2023, https://doi.org/10.3390/su152216070
[69] Karimi, H., Fani, B., Shahgholian, G., "A multi agent-based strategy protecting the loop-based micro-grid via intelligent electronic device-assisted relays", IET Renewable Power Generation, Vol. 14, No. 19, pp. 4132 – 4141, Dec. 2020, https://doi.org/10.1049/iet-rpg.201‌9.1233.
[70] Latif, A., Hussain, S.M.S., Iqbal, A., Das, D.C., Ustun, T.S., Al-Durra, A., "Concurrent frequency–voltage stabilization for hybrid microgrid with virtual inertia support", IET Renewable Power Generation , Vol. 17, No. 9, pp. 2257-2275, July 2023, https://doi.org/10.10‌49/rpg2.12729.
[71] Perez, F., Damm, G., Verrelli, C.M., Ribeiro, P.F., "Adaptive virtual inertia control for stable microgrid operation including ancillary services support", IEEE Trans. on Control Systems Technology, Vol. 31, No. 4, pp. 1552-1564, July 2023, https://doi.org/10.1109/TCST.‌2‌023.3‌234282.
[73] Chaturvedi, S., Fulwani, D., Guerrero, J.M., "Adaptive-SMC based output impedance shaping in dc microgrids affected by inverter loads", IEEE Trans. on Sustainable Energy, Vol. 11, No. 4, pp. 2940-2949, Oct. 2020, https://doi.org/ 10.1109/TSTE.2020.2982414.
[74] Ahmed, K., Hussain, I., Seyedmahmoudian, M., Stojcevski, A., Mekhilef, S., "Voltage stability and power sharing control of distributed generation units in dc microgrids", Energies, Vol. 16, Artiucle Number: 7038, Oct. 2023, https://doi.org/10.3390/en16207038.
[75] Monica, P., Kowsalya, M., Guerrero, J.M., "Logarithmic droop-based decentralized control of parallel converters for accurate current sharing in islanded DC microgrid applications", IET Renewable Power Generation, Vol. 15, No. 6, pp. 1240-1254, April 2021, https://doi.org/1‌0.1049/rpg2.12103.
[76] Hou, L., Liu, B., Shi, H., Yi, H., Zhuo, F., "New techniques for measuring islanded microgrid impedance characteristics based on current injection", Proceeding of the IEEE/IPEC, pp. 577-581, Hiroshima, Japan, May 2014, https://doi.org/ 10.1109/IPEC.2014.6869643.
[77] Jian, Z.H., He, Z.Y., Jia, J., Xie, Y., "A review of control strategies for dc micro-grid", Proceeding of the IEEE/ICICIP, pp. 666-671, June 2013, Beijing, China, https://doi.org/ 10.1109/ICICIP.2013.6568157.
[78] Shen, L., Cheng, Q., Cheng, Y., Wei, L., Wang, Y., "Hierarchical control of dc micro-grid for photovoltaic EV charging station based on flywheel and battery energy storage system", Electric Power Systems Research, Vol. 179, Article Number: 106079, Feb. 2020, https://doi.org/10.1016/j.epsr.2019.106079.
[79] Iovine, A., Siad, S.B., Damm, G., Santis, E., Benedetto, M.D., "Nonlinear control of a dc microgrid for the integration of photovoltaic panels", IEEE Trans. on Automation Science and Engineering, Vol. 14, No. 2, pp. 524-535, April 2017, https://doi.org/ 10.1109/TASE.2017.2662742.
[80] Badar, M., Ahmad, I., Rehman, S., Nazir, S., Waqas, A., "Hierarchical control of hybrid direct current microgrid with variable structure based sliding mode control and fuzzy energy management system", Journal of the Franklin Institute, Vol. 359, No. 13, pp. 6856-6892, Sept. 2022, https://doi.org/10.1016/j.jfranklin.2022.06.044.
[81] Khushoo, M., Sharma, A., Kaur, G., "DC microgrid-A short review on control strategies", Materials Today: Proceedings, Vol. 71, No. 2, pp. 362-369, 2022, https://doi.org/10.1016/j.matpr.2022.09.409.
[82] Shahgholian, G., Khani, K., Moazzami, M., "Frequency control in autanamous microgrid in the presence of DFIG based wind turbine", Journal of Intelligent Procedures in Electrical Technology, Vol. 6, No. 23, pp. 3-12, December 2015, https://dorl.net/dor/20.1001.1.2322‌3871.139‌4.6.23.1‌.9.
[83] Taye, B.A., Choudhury, N.B.D., "A dynamic droop control for a dc microgrid to enhance voltage profile and proportional current sharing", Electric Power Systems Research, Vol. 221, Article Number: 109438, Aug. 2023, https://doi.org/10.1016/j.epsr.2023.109438.
[84] Wu, D., Tang, F., Dragicevic, T., Guerrero, J.M., Vasquez, J.C., "Coordinated control based on bus-signaling and virtual inertia for islanded dc microgrids", IEEE Trans. on Smart Grid, Vol. 6, No. 6, pp. 2627–2638, Nov. 2015, https://doi.org/10.1109/TSG.2014.2387357.
[85] Zhao, X., Li, Y.W., Tian, H., Wu, X., "Energy managem‌ent strategy of multiple supercapacitors in a dc microgrid using adaptive virtual impedance", IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 4, No. 4, pp. 1174-1185, Dec. 2016, https://doi.org/10.‌1109/P‌EDG.2016.7527044.
[86] Ahmed, M., Vahidnia, A., Datta, M., Meegahapola, L., "An adaptive power oscillation damping controller for a hybrid ac/dc microgrid", IEEE Access, Vol. 8, pp. 69482-69495, 2020, https://doi.org/10.1109/ACCES‌S.20‌20.2‌98‌5978.
[87] Li, W. , Wang, Y., Wu, X., Zhang, X., "A novel solid-state circuit breaker for on-board dc microgrid system", IEEE Trans. on Industrial Electronics, Vol. 66, No. 7, pp. 5715-5723, July 2019, https://doi.org/10.1109/TIE.2018‌.28‌54559.
[88] Patrao, I., Figueres, E., Garcerá, G., González-Medina, R., "Microgrid architectures for low voltage distributed generation", Renewable and Sustainable Energy Reviews, Vol. 43, pp. 415–424, March 2015, https://doi.org/10.1016/j.rser.2014.11.054.
[89] Wang, Y., Li, W., Wu, X., Wu, X., "A novel bidirectional solid-state circuit breaker for dc microgrid", IEEE Trans. on Industrial Electronics, Vol. 66, No. 7, pp. 5707-5714, July 2019, https://doi.org/10.1109/TIE.2018.2878191.
[90] Perez, F., Iovine, A., Damm, G., Galai-Dol, L., Ribeiro, P., "Regenerative braking control for trains in a dc microgrid using dynamic feedback linearization techniques", IFAC-PapersOnLine, Vol. 52, No. 4, pp. 401-406, 2019, https://doi.org/10.1016/j.ifacol.2019.08.243.
[91] Farhang, S., Shahgholian, G., Fani, B., "Dynamic behavior improvement of control system in inverter-based island microgrid by adding a mixed virtual impedance loop to voltage control loop", International Journal of Smart Electrical Engineering, Vol. 11, No. 1, pp. 27-34, March 2022, https://dorl.net/dor/20.1001.1.22519246.20‌22.1‌1.1.4.0.
[92] Chandra, A., Singh, G. K., Pant, V., "Protection techniques for dc microgrid- A review", Electric Power Systems Research, Vol. 187, Article Number: 106439, Oct. 2020, https://doi.org/ 10.1016/j.epsr.2020.106439.
[93] Hossain, M.A., Pota, H.R., Hossain, M.J., Blaabjerg, F., "Evolution of microgrids with converter-interfaced generations: Challenges and opportunities", Internat‌ional Journal of Electrical Power and Energy Systems, Vol. 109, pp. 160-186, July 2019, https://doi.o‌rg/10.1016/j.ijepes.2019.01.038.
[94] Rangarajan, S.S., Raman, R., Singh, A., Shiva, C.K., Kumar, R., Sadhu, P.K., Collins, E.R., Senjyu, T., "DC microgrids: A propitious smart grid paradigm for smart cities", Smart Cities, Vol. 6, No. 4, pp. 1690-1718, July 2023, https://doi.org/10.3390/smartcities6040079.
[95] Che, L., Zhang, X., Shahidehpour, M., Alabdulwahab, A., Al-Turki, Y., "Optimal planning of loop-based microgrid topology", IEEE Trans. on Smart Grid, Vol. 8, No. 4, pp. 1771-1781, July 2017, https://doi.org/ 10.1109/TSG.20‌15.25‌08058.
[96] Modu, B., Abdullah, M.P., Sanusi, M.A., Hamza, M.F., "DC-based microgrid: Topologies, control schemes, and implementations", Alexandria Engineering Journal, Vol. 70, pp. 61-92, May 2023, https://doi.org/10‌.101‌6‌/j.a‌ej.2‌0‌‌23.0‌2.021.
[97] Wong, Y.C.C., Lim, C.S., Rotaru, M.D., Cruden, A., Kong, X., "Consensus virtual output impedance control based on the novel droop equivalent impedance concept for a multi-bus radial microgrid", IEEE Trans. on Energy Conversion, Vol. 35, No. 2, pp. 1078-1087, June 2020, https://doi.org/ 10.1109/TEC.2020.2972002.
[98] Vuyyuru, U., Maiti, S., Chakraborty, C., Pal, B.C., "A series voltage regulator for the radial dc microgrid", IEEE Trans. on Sustainable Energy, Vol. 10, No. 1, pp. 127-136, Jan. 2019, https://doi.org/10.1109/TSTE.2‌018‌.2‌‌828164.
[99] Bai, H., Zhang, H., Cai, H., Schiffer, J., "Voltage regulation and current sharing for multi-bus DC microgrids: A compromised design approach", Autom‌atica, Vol. 142, Article Number: 110340, Aug. 2022, https://doi.org/10.1016/j.automatica.2022.110340.
[100] Rashidirad, N., Hamzeh, M., Sheshyekani, K., Afjei, E.,  "A simplified equivalent model for the analysis of low-frequency stability of multi-bus dc microgrids", IEEE Trans. on Smart Grid, Vol. 9, No. 6, pp. 6170-6182, Nov. 2018, https://doi.org/10.1109/TSG.2017.2705194.
[101] Yang, Y., Huang, C., Zhou, D., Li, Y., "Fault detection and location in multi-terminal DC microgrid based on local measurement", Electric Power Systems Research, Vol. 194, Article Number: 107047, May 2021, https://doi.org/ 10.1016/j.epsr.2021.107047.
[102] Nougain, V., Mishra, S., Nag, S.S., Lekić, A., "Fault location algorithm for multi-terminal radial medium voltage dc microgrid", IEEE Trans. on Power Delivery, Vol. 38, No. 6, pp. 4476-4488, Dec. 2023, https://doi.org/10.1109/TPWRD.2023.3318689.
[103] Anjaiah, K., Pattnaik, S.R., Dash, P.K., Bisoi, R., "A real-time dc faults diagnosis in a DC ring microgrid by using derivative current based optimal weighted broad learning system", Applied Soft Computing, Vol. 142, Article Number: 110334, July 2023, https://doi.org/10.1016/j.asoc.2023.110334.
[104] Mohanty, R., Pradhan, A.K., "Protection of smart dc microgrid with ring configuration using parameter estimation approach", IEEE Trans. on Smart Grid, Vol. 9, No. 6, pp. 6328-6337, Nov. 2018, https://doi.org/10.11‌09/T‌S‌G.2‌017‌.2708743.
[105] Fong, Y.C., Cheng, K.W.E., Raman, S.R., "A current allocation strategy based balancing technique of voltage source string in switch-ladder inverter and its switched-capacitor variety", IEEE Trans. on Energy Conversion, Vol. 36, No. 2, pp. 1081-1089, June 2021, https://doi.org/10.1109/TEC.2020.3031224.
[106] She, X., Huang, A.Q., Lukic, S., Baran, M.E., "On integration of solid-state transformer with zonal dc microgrid", IEEE Trans. on Smart Grid, Vol. 3, No. 2, pp. 975-985, June 2012, https://doi.org/10.1109/TSG.2‌012.2187317.
[107] Sun, Q., Li, Y., Ma, D., Zhang, Y., Qin, D., "Model predictive direct power control of three-port solid-state transformer for hybrid ac/dc zonal microgrid applications", IEEE Trans. on Power Delivery, Vol. 37, No. 1, pp. 528-538, Feb. 2022, https://doi.org/10.11‌09/TPW‌RD.2021.3064418.
[108] Dou, C., Yue, D., Guerrero, J.M., Xie, X., Hu, S., "Multiagent system-based distributed coordinated control for radial dc microgrid considering transmission time delays", IEEE Trans on Smart Grid, Vol. 8, No. 5, pp. 2370-2381, Sept. 2017.
[109] Samantaray, S.R., Kamwa, I., Joo‌s, G., "Phasor measu‌rement unit based wi‌d‌e- area monitoring and information sha‌rin‌g be‌t‌w‌een micro-grids", IET Generat‌i‌on, Tra‌n‌s‌‌mis‌sion and Distribution, Vol. 11, No. 5, pp. 1293-1302, May 2017.
[110] Rashad, M., Ashraf, M., Bhatti, A.I., MustafaMinhas, D., "Mathematical modeling and stability analysis of dc microgrid using SM hysteresis controller", International Journal of Electrical Power and Energy Systems, Vol. 95, pp. 507-522, Feb. 2018.
[111] Ostrowska, A., Michalec, L., Skarupski, M., Jasiński, M., Sikorski, T., Kostyła, P., Lis, R., Mudrak, G., Rodziewicz, T., "Power quality assessment in a real microgrid-statistical assessment of different long-term working conditions", Energies, Vol. 15, No. 21, Article Number: 8089, Oct. 2022, https://doi.org/10.3390‌/en1‌521‌8089.
[112] Hossain, M.R., Ginn, H.L., "Real-time distributed coordi‌nation of power electronic converters in a dc shipboard distribution system", IEEE Trans. on Energy Conversion, Vol. 32, No. 2, pp. 770-778, June 2017, https://doi.org/10.1109/TEC.2017.2685593.
[113] Altin, N., Eyimaya, S.E., "A review of microgrid control strategies", Proceeding of the IEEE/ICRERA, pp. 412-417, Sept. 2021, Istanbul, Turkey, https://doi.org/10.1‌109/ICRERA523‌34.20-21.95‌98699.
[114] Albarakati, A.J., Boujoudar, Y., Azeroual, M., Eliysaouy, L., Kotb, H., Aljarbouh, A., Alkahtani, H.K., Mostafa, S.M., Tassaddiq, A., Pupkov, A., "Microgrid energy management and monitoring systems: A comprehensive review", Frontiers in Energy Research, Vol. 10, Article Number: 1097858, Dec. 2022, https://doi.org/10.3389/fenrg.2022.1097858.
[115] Abhishek, A., Ranjan, A., Devassy, S., Verma, B.K.,  Ram, S.K., Dhakar, A.K., "Review of hierarchical control strategies for dc microgrid", IET Renewable Power Generation, Vol. 14, No. 10, pp. 1631-1640, 2020, https://doi.org/10.1049/iet-rpg.2019.1136.
[116] Sadegheian, M., Fani, B., Sadeghkhani, I., Shahgholian, G., "A local power control scheme for electronically interfaced in islanded microgrids", Iranian Electric Industry Jour‌nal of Quality and Productivity, Vol. 8, No. 3, pp. 47-58, 2020.
[117] Bidram, A., Davoudi, A., "Hierarchical structure of microgrids control system", IEEE Trans. on Smart Grid, Vol. 3, No. 4, pp. 1963-1976, Dec. 2012, https://doi.org/10.1109/TSG.2012.2197425.
[118] Uddin, M., Mo, H., Dong, D., Elsawah, S., Zhu, J., Guerrero, J.M., "Microgrids: A review, outstanding issues and future trends", Energy Strategy Reviews, Vol. 49, Article Number: 101127, Sept. 2023, https://doi.org/10.101‌6/j.es‌‌r.2023.101127.
[119] Ashabani, S.M., Mohamed, Y.A.R.I., "General interface for power management of micro-grids using nonlinear cooperative droop control", IEEE Trans. on Power Systems, Vol. 28, pp. 2929–2941, Aug 2013, https://doi.org/10.11‌09/TP‌WRS.2013.2254729.
[120] Nayanar,  V., Kumaresan, N.,  Ammasai-Gounden, N., "A single-sensor-based MPPT controller for wind-driven induction generators supplying dc microgrid", IEEE Trans. on Power Electronics, Vol. 31, No. 2, pp. 1161-1172, Feb. 2016.
[121] Moradi, H., Azizi, N., "Distributed control of voltage and frequency of multi-machine systems with capability of active and reactive power control utilizing battery energy storage systems", Energy Engineering and Management, Vol. 9, No. 4, pp. 36-45, Jan. 2020, https://doi.org/10.22052/9.4.4.
[122] Morstyn, T., Savkin, A.V., Hredzak, B., Agelidis, V.G., "Multi-agent sliding mode control for state of charge balancing between battery energy storage systems distributed in a dc microgrid", IEEE Trans. on Smart Grid, Vol. 9, No. 5, pp. 4735-4743, Sept. 2018. https://doi.org/10‌.110‌9/TS‌G.20‌17.266‌8767.
[123] He, W., Xiong, J., Chen, W., Zhao, W., Wang, C., "Optimal scheduling of combined heat and power based microgrid", Proceeding of the IEEE/IAS, Weihai, China, pp. 1411-1415, Sept. 2020, https://doi.org/10.1109/ICP‌SAsi‌a48933.20‌20.92‌08417.
[124] Rahimi, M., Fani, B., Moazzami, M., Dehghani, M., Shahgholian, G., "An online free penetration multi-stage fuse saving protection scheme in distribution systems with photovoltaic sources", Iranian Electric Industry Journal of Quality and Productivity, Vol. 9, No. 2, pp. 24-35, 2020, https://doi.org/10.29252/ieijqp.9.2.24.
[125] Ion, C.P., Marinescu, C., "Autonomous micro-grid based on micro hydro power plants", Proceeding of the IEEE/OPTIM) Brasov, pp. 941-946, Brasov, Romania, May 2012, https://doi.org/10.1109/OPTIM.20‌12.62‌31‌9‌18.
[126] Hemmatpour, M.H., Mohammadian, M., Gharaveisi, A.A., "Simple and efficient method for steady-state voltage stability analysis of islanded microgrids with considering wind turbine generation and frequency deviation", IET Generation, Transmission and Distribution, Vol. 10, No. 7, pp. 1691-1702, May 2016.
[127] Mhankale, S.E., Thorat, A.R., "Droop control strategies of dc microgrid: A review", Proceeding of the IEEE/ICCTCT, pp. 372-376, Coimbatore,  India, March 2018, https://doi.org/ 10.1109/ICCTCT.2018.8550854.
[128] Kulkarni, S.V., Gaonkar, D.N., "Improved droop control strategy for parallel connected power electronic converter based distributed generation sources in an islanded microgrid", Electric Power Systems Research, Vol. 201, Article Number: 107531, Dec. 2021, https://doi.org/10.1016/j.epsr.2021.107531.
[129] Mohammadzamani, F., Hashemi, M., Shahgholian, G., "Adaptive control of nonlinear time delay systems in the presence of output constraints and actuator’s faults", International Journal of Control, Vol. 96, No. 3, pp. 541-553, March 2023, https://doi.org/10.1080/002‌07179.‌202‌1.2005257.
[130] Perez, F., Iovine, A., Damm, G., Galai-Dol, L., Ribeiro, P.F., "Stability analysis of a dc microgrid for a smart railway station integrating renewable sources", IEEE Trans. on Control Systems Technology, Vol. 28, No. 5, pp. 1802-1816, Sept. 2020, https://doi.org/10.1109/TCST.2019.2924615.
[131] Bisheh, H., Moazzami, M., Fani, B., Shahgholian, G., "A new method for cont‌rolling microgrids protection settings with the high penetration of distributed gener‌at‌ion", Compu‌tat‌ional Intelligence in Elect‌rical Engineering, Vol. 10, No. 4, pp. 71-90, Winter 2020, https://doi.org/10.22108/isee‌.2019‌.116‌834.1219.
[132] Zhang, L.,  Tai, N., Huang, W., Liu, J., Wang, Y., "A review on protection of dc microgrids", Journal of Modern Power Systems and Clean Energy, Vol. 6, No. 6, pp. 1113-1127, Nov. 2018, https://doi.org/10.1007/s405‌65-01‌8-0381-9.
[133] Jin, X., Shen, Y., Zhou, Q., "A systematic review of robust control strategies in DC microgrids", The Electricity Journal, Vol. 35, No. 5, Article Number: 107125, June 2022, https://doi.org/10.1016/j.t‌ej.202‌2.1‌07125.
[134] Lu, Z., Wang, L., Wang, P., "Review of voltage control strategies for dc microgrids", Energies, Vol. 16, No. 17, Article Number: 6158, Aug. 2023, https://doi.org/10.33‌9‌0/e‌n1‌6176158.
[135] Shuaia, Z., Fanga, J., Ninga, E., Shenb, Z.J., "Hierarchical structure and bus voltage control of dc microgrid", Rene‌wable and Sustainable Energy Reviews, Vol. 82, pp. 3670-3682, Feb. 2018, https://doi.org/10.101‌6/j.rser.2017.10.096.
[136] Han, Y., Ning, X., Yang, P., Xu, L., "Review of power sharing, voltage restoration and stabilization techniques in hierarchical controlled dc microgrids", IEEE Access, Vol. 7, pp. 149202-149223, Oct. 2019, https://doi.org/10.11‌09/A‌CCES‌‌S.20‌19.2‌946706.
[137] Zhang, L.,  Zhang, W., Zeng, F., Yang, X., "A review of control strategies in dc microgrid", Journal of Physics: Conference Series, Vol. 1087, No. 4, 2018, https://doi.org/10.1088/1742-6596/1087/4/042035.
[138] Dadi, R., Meenakshy, K., Damodaran, S., "A review on secondary control methods in dc microgrid", Journal of Operation and Automation in Power Engineering, Vol. 11, No. 2, pp. 105-112, Aug. 2023, https://doi.org/10.220‌98/jo‌a‌pe.2022.9157.1636.
[139] Jain, D., Saxena, D., "Comprehensive review on control schemes and stability investigation of hybrid ac-dc microgrid", Electric Power Systems Research, Vol. 218, Article Number: 109182, May 2023, https://doi.org‌/10.101‌6/j.ep‌sr.20‌23.109182.
[140] Meng, L., Shafiee,Q., Trecate, G.F., Karimi, H., Fulwani, D., Lu, X., Guerrero, J.M., "Review on control of dc mic‌r‌ogrids and multiple microgrid cluste‌rs", IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 5, No. 3, pp. 928 – 948, Sept. 201, https://doi.org/10.1109‌/JEST‌PE.2‌017.2‌690219.
[141] Sahoo, S.K., Sinha, A.K., Kishore, N.K., "Control techniques in ac, dc, and hybrid ac–dc microgrid: A review", IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 6, No. 2, pp. 738-759, June 2018, https://doi.org/10.1109/JESTPE.2017.2786588.
[142] Židonis, A., Aggidis, G.A., "State of the art in numerical modelling of Pelton turbines", Renewable and Sustainable Energy Reviews, Vol. 45, pp. 135–144, May 2015, https://doi.org/10.1016/j.rser.2015.01.037.
[143] Nagasri, D.L.S., Marimuthu, R., "Review on advanced control techniques for microgrids", Energy Reports, Vol. 10, pp. 3054-3072, Nov. 2023, https://doi.org/10.101‌6/j.eg‌‌yr.20‌23.09.162.
[144] Palizban, O., Kauhaniemi, K., "Hierarchical control structure in microgrids with distributed generation: Island and grid-connected mode", Renewable and Sustainable Energy Reviews, Vol. 44, pp. 797-813, April 2015, https://doi.org/10.1016/j. rser.2015.01.008.
[145] Arfeen, Z.A., Khairuddin, A.B., Larik, R.M., Saeed, M.S., "Control of distributed generation systems for microgrid applications: A technological review", International Transactions on Electrical Energy Systems, Vol. 29, No. 9, Sept. 2019, https://doi.org/10.1002/2050-7038.12072.
[146] Porco, J.W.S., Shafiee, Q., Dorfler, F., Vasquez, J.C., Guerrero, J., Bullo, F., "Secondary frequency and voltage control of islanded kficrogrids via dist‌rib‌uted averaging", IEEE Trans. on Industrial Ele‌c‌tronics, Vol. 62, No. 11, pp. 7025-7038, Nov. 2015.
[147] Li, D., Zhao, B., Wu, Z., Zhang, X., Zhang, L., "An improved droop control strategy for low-voltage microgrids based on distributed secondary power optimization control", Energies, Vol. 10, No. 9, Article Number: 1347, Sept. 2017, https://doi.org/10.3390/e‌n100‌91347.
[148] Aboushal, M.A., Moustafa, M.M.Z., "A new unified control strategy for inverter-based micro-grid using hybrid droop scheme", Alexandria Engineering Journal, Vol. 58, No. 4, pp.  1229-1245, 2019, https://doi.org/10.1016/j.aej.2019.10.006.
[149] Cucuzzella, M., Lazzari, R., Trip, S.,  Rosti, S., Sandroni, C., Ferrara, A., "Sliding mode voltage control of boost converters in dc microgrids", Control Eng‌ine‌ering Practice, Vol. 73, PP. 161-170, April 2018.
[150] Li, G., He, G., Bao, W., Sun, Y., Hao, M., "A hierarchical control strategy of micro-grid based on grid-friendly distributed generation technology", Proceeding of the IEEE/POWERCON, pp. 3181-3185, Chengdu, China, Oct. 2014, https://doi.org/10.1109/POW‌ERC‌ON.2‌014.6993684.
[151] Keyvani-Boroujeni, B., Shahgholian, G., Fani, B., "A distributed secondary control approach for inverter-dominated microgrids with application to avoiding bifurcation-triggered instabilities",  IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 8, No. 4, pp. 3361-3371, Dec. 2020, https://doi.org/10.110‌9/JE‌STPE.2020.2974756
[152] Wang, J., Jin, C., Wang, P., "A uniform control strategy for the interlinking converter in hierarchical controlled hybrid AC/DC microgrids", IEEE Trans. on Industrial Electronics, Vol. 65, No. 8, pp. 6188-6197, Aug. 2018, https://doi.org/10.1109/TIE.2017.2784349.
[153] Morstyn, T., Hredzak, B., Agelidis, V.G., "Control strategies for microgrids with distributed energy storage systems: An overview", IEEE Trans. on Smart Grid, Vol. 9, No. 4, pp. 3652-3666, July 2018, https://doi.org/10.1‌109/‌TS‌G.2‌016.2637958.
[154] Yadav, M., Pal, N., Saini, D.K., "Microgrid control, storage, and communication strategies to enhance resiliency for survival of critical load", IEEE Access, Vol. 8, pp. 169047-169069, 2020, https://doi.org/10.1‌109/A‌CCE‌S‌S.2020‌.3023‌087.
[155] Xing, L., Mishra, Y., Guo, F., Lin, P., Yang, Y., Ledwich, G., Tian, Y.C., "Distributed secondary control for current sharing and voltage restoration in dc microgrid", IEEE Trans. on Smart Grid, Vol. 11, No. 3, pp. 2487-2497, May 2020, https://doi.org/10.1109/TSG.2‌019.2956515.
[156] Guerrero, J.M., Vásquez, J.C., Matas, J., Castilla, M., Vicuña, L.G.D., Castilla, M., "Hierarchical control of droop-controlled ac and dc microgrids- A general approach toward standardization", IEEE Trans. on Industrial Electronics, Vol. 58, pp. 158–172, Jan. 2011.
[157] Chandorkar, M.C., Divan, D.M., Adapa, R., "Control of parallel connected inverters in standalone ac supply systems", IEEE Trans. on Industry Applications, Vol. 29, No. 1, pp. 136-143, Jan./Feb. 1993, https://doi.org/10.1109/28.195899.
[158] Unamuno, E., Barrena, J.A., "Hybrid ac/dc microgrids-Part II: Review and classification of control strategies", Renewable and Sustainable Energy Reviews, Vol. 52, pp. 1123-1134, Dec. 2015.
[159] Ali, S., Zheng, Z., Aillerie, M., Sawicki, J.P., Péra, M.C., Hissel, D., "A review of dc microgrid energy management systems dedicated to residential applications", Energies, Vol. 14, No. 14, Article Number: 4308, July 2021, https://doi.org/10.3390/en14144308.
[160] Saleh, M., Esa, Y., Mohamed, A.A., "Communication-based control for dc microgrids", IEEE Trans. on Smart Grid, Vol. 10, No. 2, pp. 2180-2195, March 2019, https://doi.org/10.1109/TSG.2018.2791361.
[161] Onaolapo, A.K., Sharma, G., Bokoro, P.N., Aluko, A., Pau, G., "A distributed control scheme for cyber-physical dc microgrid systems", Energies, Vol. 16, No. 15, Article Number: 5611, July 2023, https://doi.org/10.3‌3‌90/e‌n161‌556‌11.
[162] Gu, Y., Yang, H., Sun, W., Chi, Y., Li, W., He, X., "Hierarchical control of dc microgrids robustness and smartness", CSEE Journal of Power and Energy Systems, Vol. 6, No. 2, pp. 384-393, June 2020, https://doi.org/10.17775/CSEEJPES.2017.00920.
[163] Dragičević, T., Guerrero, J.M., Vasquez, J.C., Škrlec, D.,"Supervisory control of an adaptive-droop regulated dc microgrid with battery management capability", IEEE Trans. on Power Electronics, Vol. 29, No. 2, pp. 695-706, Feb. 2014, https://doi.org/10.1109/TPEL.2013.2257857.
[165] Hu, J., Shan, Y., Guerrero, J.M., Ioinovici, A., Chan, K.W., Rodriguez, J., "Model predictive control of microgrids– An overview", Renewable and Sustainable Energy Reviews, Vol. 136, Article Number: 110422, Feb. 2021, https://doi.org/10.1016/j.rser.2020.110422.
[167] Ngamroo, I., Surinkaew, T., "Coordinated decentralized and centralized microgrid control for distributed renewable energy sources with integrated batteries", IET Renewable Power Generation, Vol. 16, No. 15, pp. 3251-3266, Nov. 2022, https://doi.org/10.1049/rpg2.12576.
[168] Bandeiras, F., Gomes, A., Gomes, M., Coelho, P., "Exploring energy trading markets in smart grid and microgrid systems and their implications for sustainability in smart cities", Energies, Vol. 16, No. 2, Article Number: 801, Jan. 2023, https://doi.org/10.33‌90/en16020801.
[169] Raju, P.E.S.N., Jain, T.,  "Development and validation of a generalized modeling approach for islanded inverter-based microgrids with static and dynamic loads", International Journal of Electrical Power and Energy Systems, Vol. 108, pp. 177-190, June 2019, https://doi.org/10.1016/j.ijepes.‌2019.0‌1.002.
[170] Kumar, J., Agarwal, A., Aga‌r‌wal, V., "A review on overall control of dc mi‌c‌r‌ogrids", Journal of Energy Sto‌rage, Vol. 21, pp. 113-138, Feb. 2019, https://doi.org/10.1016/j.est.2018.11.013.
[171] Khadka, N., Bista, A., Adhikari, B., Shrestha, A., Bista, D., Adhikary, B., "Current practices of solar photovoltaic panel cleaning system and future prospects of machine learning implementation", IEEE Access, Vol. 8, pp. 135948-135962, July 2020, https://doi.org/10.1109/A‌CCESS.2‌020.3‌011553.
[172] Fattollahi, A., Shahgholian, G., Fani, B., "Decentralized synergistic control of multi-machine power system using power system stabilizer", Signal Processing and Renewable Energy, Vol. 4, No. 4, pp. 1-21, Dec. 2020, https://dorl.net/dor/20.1001.1.25887327.2020.4.4.1.9.
[173] Mehdi, M., Kim, C., Saad, M., "Robust centralized control for dc islanded microgrid considering communication netw‌ork delay", IEEE Access, Vol. 8, pp. 77765-77778, April 2020,  https://doi.org/10.1109/ACC‌ESS.2‌020.29‌897‌77.
[174] Gu, Y., Xiang, X., Li, W., He, X., "Mode-adaptive decentralized control for renewable dc microgrid with enhanced reliability and flexibility", IEEE Trans. on Power Electronics, Vol. 29, No. 9, pp. 5072-5080, Sept. 2014, https://doi.org/ 10.1109/TPEL.2013.2294204.
[175] Morstyn, T., Hredzak, B., Demetriades, G.D., Agelidis, V.G., "Unified distributed control for dc microgrid operating modes", IEEE Trans. on Power Systems, Vol. 31, No. 1, pp. 802-812, Jan. 2016, https://doi.org/10.‌1109/T‌P‌WR‌S.2015.2406871.
[176] Wang, Z., Liu, F., Chen, Y., Low, S. H., Mei, S., "Unified distributed control of stand-alone dc microgrids", IEEE Trans. on Smart Grid, Vol. 10, No. 1, pp. 1013-1024, Jan. 2019, https://doi.org/ 10.1109/T‌SG.2017.2757498.
[177] Ahmadi, R., Ferdowsi, M., "Improving the performance of a line regulating converter in a converter-dominated dc microgrid system", IEEE Trans. on Smart Grid, Vol. 5, No. 5, pp. 2553-2563, Sept. 2014, https://doi.org/10.1‌109/TSG.2‌0‌14.2319267.
[178] Gulin, M., Vašak, M., Pavlović, T., "Dynamical behaviour analysis of a dc microgrid in distributed and centralized voltage control configurations", Proceeding of the IEEE/ISIE, pp. 2365-2370, Istanbul, Turkey, June 2014, https://doi.org/10.1109/ISIE.2014.6864989.
[179] Xu, S., Pourbabak, H., Su, W.,  "Distributed cooperative control for economic operation of multiple plug‌in electric vehicle parking decks", International Transactions on Electrical Energy Systems, Vol. 27, No. 9, Article Number: e2348, Sept. 2017, https://doi.org/10.1002/et‌ep.2348.
[180] Pourbabak, H., Ajao, A., Chen, T., Su, W., "Fully distributed AC power flow (ACPF) algorithm for distribution systems", IET Smart Grid, Vol. 2, No. 2, pp. 155–162,June 2019, https://doi.org/10.1049/iet-stg.20‌18.0‌060.
[181] Guo, L., Wang, C., Guo, L., Cao, J., "Dynamical charact‌eristic of microgrid with peer to peer control", Proceeding of the IEEE/CICED, pp. 1-7, Guangzhou, China, Dec. 2008, https://doi.org/10.1109/CICED.2008.‌5211780.
[182] Xiao, Z., Wu, J., Jenkins,N.,  "An overview of microgrid control", Journal Intelligent Automation and Soft Comp‌uting, Vol. 16, No. 2, pp. 199-212, 2010, https://doi.o‌rg/10.10‌8‌0/10798587.2010.10643076.
[183] Hernandez, B., Giraldo, E., Ospina, S., Garces, A., "Master-slave operation of dc microgrids: An adaptive control approach with estimation", Proceeding of the IEEE/CCAC, pp. 1-6, Medellin, Colombia, Oct. 2019, https://doi.org/10.‌1109/‌CCA‌C.2019.8921087.
[184] Karami, P., Baharizadeh, M., Golsorkhi, M.S., Ershadi, M.H., "A coordinated control of hybrid ac/dc microgrids based on master–slave method", Electrical Engineering, Vol. 104, pp. 3619–3629, May 2022, https://doi.org/10‌.1‌0‌07/s‌002‌02-022-01573-w.
[185] Hu, J., Zhang, T., Du, S., Zhao, Y., "An overview on analysis and control of micro-grid system", International Journal of Control and Automation, Vol. 8, No. 6, pp. 65-76, 2015.
[186] Lai, J., Lu, X., Wang, F., Dehghanian, P., Tang, R.,  "Broadcast gossip algorithms for distributed peer-to-peer control in ac microgrids", IEEE Trans. on Industry Applications, Vol. 55, No. 3, pp. 2241-2251, May/June 2019, https://doi.org/10.1109/TIA.2019.2898367.
[187] Wang, Y., Nguyen, T.L., Xu, Y., Tran, Q.T., Caire, R.,  "Peer-to-peer control for networked microgrids: Multi-layer and multi-agent architecture design", IEEE Trans. on Smart Grid, Vol. 11, No. 6, pp. 4688-4699, Nov. 2020, https://doi.org/10.1109/TSG.2020.3006883.
[188] Kalke, D., Suryawanshi, H.M., Talapur, G.G. Deshmukh, R., Nachankar, P., "Modified droop and master-slave control for load sharing in multiple standalone ac microgrids", Proceeding of the IEEE/IECON, Lisbon, Portugal, pp. 1862-1867, Oct. 2019, https://doi.org/10.1109/IECON.20‌19.89‌27575.
[189] Mortezaei, A., Simões, M.G., Savaghebi, M., Guerrero, J.M., Al-Durra, A., "Cooperative control of multi- master–slave islanded microgrid with power quality enhancement based on conservative power theory", IEEE Trans. on Smart Grid, Vol. 9, No. 4, pp. 2964-2975, July 2018, https://doi.org/10.1109/TSG.2016.2623673.
[190] Lee, S.W., Cho, B.H., "Master–slave based hierarchical control for a small power dc-distributed microgrid system with a storage device", Energies, Vol. 9, No. 11, Article Number: 880, Oct. 2016, https://doi.org/10.3390/en91‌1‌08‌8‌0.
[191] Guo, L., Feng, Y., Li, X., Wang, C., Li, Y., "Stability analysis of a dc microgrid with master-slave control structure", Proceeding of the IEEE/ECCE, pp. 5682-5689, Pittsburgh, PA, USA, Sept. 2014, https://doi.org‌/10.11‌09/E‌CCE.2014.6954180.
[192] Gu, H., Jiao, Z., Liu, J., "Small-signal model and stability analysis of dc microgrids with master-slave control strategy", Proceeding of the IEEE/PESGM), pp. 1-5, Atlanta, GA, USA, Aug. 2019, pp. 1-5, https://doi.org/10.1109/PESGM40551.2019.8974020.
[193] Chen, Y., Li, J., Wen, Y., Sehnan, M., Xu, W., "A hybrid master–slave control strategy for multiple distributed gene‌ra‌tors in microgrid", Energies, Vol. 16, No. 2, Article Num‌ber: 968, Jan. 2023, https://doi.org/10.3‌390/e‌n160‌‌209‌6‌8.
[194] Khaledian, A., Golkar, M.A., "Analysis of droop control method in an autoNomous microgrid", Journal of Applied Research and Technology, Vol. 15, No. 4, pp. 371-377, Aug. 2017,  https://doi.org/10.1016/j.jart.2‌01‌7.03‌.004.
[195] Zandi, F., Fani, B., Golsorkhi, A., "A visually driven nonlinear droop control for inverter-dominated islanded microgrids", Electrical Engineering, Vol. 102, pp. 1207–1222, 2020, https://doi.org/10.1007/s00202-020-00942-7.
[196] Rajesh, K.S., Dash, S.S., Rajagopal, R., Sridhar, R., "A review on control of ac microgrid", Renewable and Sustai‌nable Energy Reviews, Vol. 71, pp. 814–819, 2017, http://dx.doi.org/10.1016/j.rser.2016.12.106.
[197] Ghanbari, N., Mobarrez, M., Bhattacharya, S., "A review and modeling of different droop control based methods for battery state of the charge balancing in dc microgrids", Proceeding of the IEEE/IECON, pp. 1625-1632, Washing‌ton, DC, USA, Oct. 2018, https://doi.org/10.1109/IECON.2‌018.8591739.
[198] Lai, H., Xiong, K., Zhang, Z., Chen, Z., "Droop control strategy for microgrid inverters: A deep reinforcement learning enhanced approach", Energy Reports, Vol. 9, No. 8, pp. 567-575, Sept. 2023, https://doi.org/10.1016/j.e‌‌gy‌r.‌2023.04.263.
[199] Ibanez, F., Mahmoud, A., Yaroslav, V., Peric, V. Vorobev, P., "Improving the power sharing transients in droop-controlled inverters with the introduction of an angle difference limiter", International Journal of Electrical Power and Energy Systems, Vol. 153, Article Number: 109371, Nov. 2023, https://doi.org/10.1016/‌j.ije‌pes.2023.109371.
[200] Liu, S., Miao, H., Li, J., Yang, L., "Voltage control and power sharing in dc Microgrids based on voltage-shifting and droop slope-adjusting strategy", Electric Power Systems Research, Vol. 214, Article Number: 108814, Jan. 2023, https://doi.org/10.1016/j.epsr.2022.108814.
[201] Lu, X., Guerrero, J.M., Sun, K., Vasquez, J.C., "An improved droop control method for dc microgrids based on low bandwidth communication with dc bus voltage restoration and enhanced current sharing accuracy", IEEE Trans. on Power Electronics, Vol. 29, No. 4, pp. 1800-1812, April 2014, https://doi.org/10.1109/TPEL.2‌013‌.226‌6419.
[202] Villa, A., Belloni, F., Chiumeo, R., Gandolfi, C., "Conventional and reverse droop control in islanded microgrid: Simulation and experimental test", Proceeding of the IEEE/SPEEDAM, pp. 288-294, Capri, Italy, June 2016, https://doi.org/10.1109/SPEEDAM.20‌16.752‌602‌0.
[203] Cao, W., Han, M., Meng, X., Xie, W., Khan, Z.W., Guerrero, J.M., Tinajero, G.D.A., "Reverse droop control-based smooth transfer strategy for interface converters in hybrid ac/dc distribution networks", CSEE Journal of Power and Energy Systems, Vol. 9, No. 1, pp. 122-134, Jan. 2023, https://doi.org/10.17775/CSEEJ‌PES.2020.‌02070.
[204] Xu, G. , Sha, D., Liao, X., "Decentralized inverse-droop control for input-series–output-parallel dc–dc converters", IEEE Trans. on Power Electronics, Vol. 30, No. 9, pp. 4621-4625, Sept. 2015, https://doi.org/10.1109/TPEL.2015.2‌396898.
[205] Shahgholian, G., Fani, B., Keyvani, B., Karimi, H., Moazzami, M., "Improve the rea‌ctive power sharing by uses to modify dro‌op characteristics in autonomous micr‌og‌rids", Energy Engineering and Manage‌ment, Vol. 9, No. 3, pp. 64-71, 2019, Oct. https://doi.org/10.220‌52/9.3.64.
[206] Tayab, U.B., Roslan, M.A.B., Hwai, L.J., Kashif, M., "A review of droop control techniques for microgrid", Renewable and Sustainable Energy Reviews, Vol.76, pp. 717-727, Sept. 2017, https://doi.org/10.1016/j.rser.2017.03.028.
[207] Bintoudi, A.D., Zyglakis, L., Tsolakis, A.C., Ioannidis, D., Hadjidemetriou, L., Zacharia, L., Al-Mutlaq, N., Al-Hashem, M., Al-Agtash, S., Kyriakides, E., Demoulias, C., Tzovaras, D., "Hybrid multi-agent-based adaptive control scheme for ac microgrids with increased fault-tolerance needs", IET Renewable Power Generation, Vol. 14, No. 1, pp. 13-26, 2020, https://doi.org/10.1049/iet-rpg.2019.0468.
[208] Hatahet, W., Marei, M.I., Mokhtar, M., "Adaptive controll‌ers for grid-connected dc microgrids", International Journal of Electrical Power and Energy Systems, Vol. 130, Article Number: 106917, Sept. 2021, https://doi.org/10.1016/j.ije‌pes.2021.106917.
[209] Mokhtar, M., Marei, M.I., El-Sattar, A.A.,  "An adaptive droop control scheme for dc microgrids integrating sliding mode voltage and current controlled boost converters", IEEE Trans. on Smart Grid, Vol. 10, No. 2, pp. 1685-1693, March 2019, https://doi.org/10.1109‌/TSG.‌2017.2776281.
[210] Lu, X., Sun, K., Guerrero, J.M., Vasquez, J.C., Huang, I., "State-of-charge balance using adaptive droop control for distributed energy storage systems in dc microgrid applications", IEEE Trans. on Industrial Electronics, Vol. 61, No. 6, pp. 2804-2815, June 2014, https://doi.org/10.‌1109/TIE.2013.2279374.
[211] Li, F., Zhuo, S., Huangfu, Y., Wang, X., Song, S., Gan, Z., "An improved nonlinear droop control method applied to dc microgrid", Proceeding of the IEEE/IAS, pp. 1-6, Nashville, TN, USA, Oct./Nov. 2023, https://doi.org/10.11‌09/IAS54024.2023‌.1040‌7011.
[212] Sharma, S., Iyer, V.M., Bhattacharya, S., "An optimized nonlinear droop control method using load profile for dc microgrids", IEEE Journal of Emerging and Selected Topics in Industrial Electronics, Vol. 4, No. 1, pp. 3-13, Jan. 2023, https://doi.org/10.1109/JESTIE.2022.3208513.
[213] Abdelgabir, H., Boynuegri, A.R., Elrayyah, A., Sozer, Y., "A complete small signal modelling and adaptive stability analysis of nonlinear droop-controlled microgrids", Proceeding of the IEEE/APEC, pp. 3333-3339, San Antonio, TX, USA, March 2018, https://doi.org/10.1109/APEC.2018.8341581.
[214] Shadabi, H., Kamwa, I., "A decentralized non-linear dynamic droop control of a hybrid energy storage system bluefor primary frequency control in integrated AC-MTDC systems", International Journal of Electrical Power & Energy Systems, Vol. 136, Article Number: 107630, March 2022, https://doi.org/10.1016/j.ijepes.20‌21.107630.
[215] Liu, S., Su, P., Zhang, L., "A virtual negative inductor stabilizing strategy for dc microgrid with constant power loads", IEEE Access, Vol. 6, pp. 59728-59741, Oct. 2018, https://doi.org/10.1109/ACCESS.2018.2874201.
[216] Yengijeh, N.P., Moradi-CheshmehBeigi, H., Hajizadeh, A., "Inertia emulation with the concept of virtual supercapacitor based on SOC for distributed storage systems in islanded DC microgrid", IET Renewable Power Generation, Vol. 61, No.13, pp. 2805-2815, 5 Oct. 2022, https://doi.org/10.10‌49/rp‌g2.12537.
[217] Keyvani, B., Fani, B., Shahgholian, G., "Preventing of bifurcation consequences in VSI-dominated micro-grids using virtual impedance theory", Computational Intelli‌gence in Electrical Engineering, Vol. 12, No. 1, pp. 48-60, 2021, https://doi.org/10.22108/ISEE.20‌20.1223‌4‌1.1358.
[218] Kamali, M., Fani, B., Shahgholian, G., Gharehpetian, G.B., Shafiee, M., "Harmonic compensation and micro-grid voltage and frequency control based on power proportional distribution with adaptive virtual impedance method", Journal of Intelligent Procedures in Electrical Technology, Vol. 14, No. 53, pp. 33-60, June 2023, https://dorl.net/do‌r/20.1001.1.23223871.1402.14.53.3.7.
[219] Mohammed, N., Callegaro, L., Ciobotaru, M., Guerrero, J.M., "Accurate power sharing for islanded DC microgrids considering mismatched feeder resistances", Applied Energy, Vol. 340, Article Number: 121060, June 2023, https://doi.org/10.1016/j.apenergy.2023.121060.
[220] Diaz, N.L., Dragičević, T., Vasquez, J.C., Guerrero, J.M., "Intelligent distributed generation and storage units for dc microgrids- A new concept on cooperative control without communications beyond droop control", IEEE Transactions on Smart Grid, Vol. 5, No. 5, pp. 2476-2485, Sept. 2014, https://doi.org/10.1109/TSG.2014.2341740.
[221] Hamzeh, M., Ghafouri, M., Karimi, H., Sheshyekani, K., Guerrero, J.M., "Power oscillations damping in dc microgrids", IEEE Trans. on Energy Conversion, Vol. 31, No. 3, pp. 970-980, Sept. 2016, https://doi.org/10.1109/TEC.201‌6.254‌2266.
[222] An, R., Liu, Z., Liu, J., "Successive-approximation-based virtual impedance tuning method for accurate reactive power sharing in islanded microgrids", IEEE Trans. on Power Electronics, Vol. 36, No. 1, pp. 87-102, Jan. 2021, https://doi.org/10.1109/TPEL.2020.3001037.
[223] Dou, C., Zhang, Z., Yue, D., Song, M., "Improved droop control based on virtual impedance and virtual power source in low-voltage microgrid", IET Generation, Tran‌sm‌‌ission and Distribution, Vol. 11, No. 4, pp. 1046-1054, March 2017, https://doi.org/10.1049/iet-gtd.201‌6.1492.
[224] Zhang, Y., Li, Y.W., "Energy management strategy for supercapacitor in droop-controlled dc microgrid using virtual impedance", IEEE Trans. on Power Electronics, Vol. 32, No. 4, pp. 2704-2716, April 2017, https://doi.org/10.1109/TPEL.2016.2571308.