[1] Grald, E. W., Kuehn, T.H., "Performance analysis of a parabolic trough solar collector with a porous absorber receiver", Solar Energy, Vol. 42, pp. 281-292. 1989. https://doi.org/10.1016/0038-092X(89)90030-3.
[2] Thundil Karuppa Raj, T. Srinivas, M. Natarajan, K. Arun Kumar, A. Chengappa and A. Deoras, "Experimental and numerical analysis using CFD technique of the performance of the absorber tube of a solar parabolic trough collector with and without insertion", International Conference on Energy Efficient Technologies for Sustainability, Vol. 12, pp. 550-556, 2013. https://doi.org/10.1109/ICEETS.2013.6533444.
[3] Marif, Y., Benmoussa, H., Bouguettaia, H., Belhadj, M.M., Zerrouki, M., "Numerical simulation of solar parabolic trough collector performance in the Algeria Saharan region", Energy Conversion and Management, Vol. 85, pp. 521-529, 2014. https://doi.org/10.1016/j.enconman.2014.06.002.
[4] Rostami, S., Sepehrirad, M., Dezfulizadeh, A., Kadhim Hussein, A., Shahsavar Goldanlou, A., Safdari Shadloo, M., "Exergy Optimization of a Solar Collector in Flat Plate Shape Equipped with Elliptical Pipes Filled with Turbulent Nanofluid Flow: A Study for Thermal Management", Water, Vol. 12, pp. 2294, 2020. https://doi.org/10.3390/w12082294
[5] Pigozzo Filho, V.C., de Sá, A.B., Passos, J.C., Colle, S., "Experimental and Numerical Analysis of Thermal Losses of a Parabolic Trough Solar Collector", Energy Procedia, Vol. 57, pp. 381-390, 2014. https://doi.org/10.1016/j.egypro.2014.10.191.
[6] Ghomrassi, A., Mhiri, H., Bournot, P., "
Numerical Study and Optimization of Parabolic Trough Solar Collector Receiver Tube", J. Sol. Energy Eng. Vol. 137, pp. 106-116, 2015.
https://doi.org/10.1115/1.4030849.
[7] Shahsavar Goldanlou, A., Sepehrirad, M., Dezfulizadeh, A., Golzar, A., Badri, M., Rostami, S., "Efects of using ferromagnetic hybrid nanoluid in an evacuated sweep-shape solar receiver", Journal of Thermal Analysis and Calorimetry Vol. 143, pp. 1623–1636, 2021. https://doi.org/10.1007/s10973-020-09903-5.
[8] Rostami, S., Shahsavar, A., Kefayati, G., Shahsavar Goldanlou, A., "Energy and Exergy Analysis of Using Turbulator in a Parabolic Trough Solar Collector Filled with Mesoporous Silica Modified with Copper Nanoparticles Hybrid Nanofluid", Energies, Vol. 13, pp. 29-46, 2020. https://doi.org/10.3390/en13112946.
[9] Khetib, Y., Alahmadi, A., Alzaed, A., Sharifpur, M., Cheraghian, G., Siakachoma, C., "
Simulation of a parabolic trough solar collector containing hybrid nanofluid and equipped with compound turbulator to evaluate exergy efficacy and thermal-hydraulic performance", Energy Science & Engineering, Vol. 10, pp. 4304-4317, 2022.
https://doi.org/10.1002/ese3.975.
[10] Nazir, M.S., Ghasemi, A., Dezfulizadeh, A. et al. "
Numerical simulation of the performance of a novel parabolic solar receiver filled with nanofluid", J Therm Anal Calorim, Vol. 144, pp. 2653-2664, 2021.
https://doi.org/10.1007/s10973-021-10613-9.
[11] Varun, K., Chandavar Arunachala, U., "Thermo-hydraulic and exergy analysis of parabolic trough collector with wire matrix turbulator: an experimental investigation", International Journal of Exergy, Vol. 36, pp 125-149, 2021. https://doi.org/10.1504/IJEX.2021.118709.
[12] Khetib, Y., Alzaed, A., Alahmadi, A., Cheraghian, G., Sharifpur, M., "Application of hybrid nanofluid and a twisted turbulator in a parabolic solar trough collector: Energy and exergy models", Sustainable Energy Technologies and Assessments, Vol. 49, pp. 125-149, 2022. https://doi.org/10.1016/j.seta.2021.101708.
[13] Khetib, Y., Melaibari, A., Alsulami, R., "
The Influence of Combined Turbulators on the Hydraulic-Thermal Performance and Exergy Efficiency of MWCNT-Cu/Water Nanofluid in a Parabolic Solar Collector: A Numerical Approach", Frontiers in Energy Research, Vol. 9, pp. 716549,
https://doi.org/10.3389/fenrg.2021.716549.
[14] Dezfulizadeh, A., Aghaei, A., Sheikhzadeh, G.A., "Comprehensive 3E analyses of a parabolic trough collector equipped with an innovative combined twisted turbulator", Engineering Analysis with Boundary Elements, Vol. 150, pp. 507-527, 2023. https://doi.org/10.1016/j.enganabound.2023.02.032.
[15] Shahzad Nazir, M., Shahsavar, A., Afrand, M., Arıcı, M., Nižetić, S., Ma, Z., Öztop, H.F., "A comprehensive review of parabolic trough solar collectors equipped with turbulators and numerical evaluation of hydrothermal performance of a novel model", Sustainable Energy Technologies and Assessments, Vol. 45, pp. 101-103, 2021. https://doi.org/10.1016/j.seta.2021.101103.
[16] Zaboli, M., Mousavi Ajarostaghi, S.S., Saedodin, S., Saffari Pour, M., "
Thermal Performance Enhancement Using Absorber Tube with Inner Helical Axial Fins in a Parabolic Trough Solar Collector", Appl. Sci. Vol. 11(16), pp. 23-74, 2021.
https://doi.org/10.3390/app11167423.
[17] Aghaei A, Dezfulizadeh A, Fadaei dehar A, Sepehrirad M, Mazaheri H. "Determination of Energy Efficiency and Exergy of Solar Collector Bed, Operating Plate under Turbulent Nanoscale Flow with Molybdenum Disulfide Nanoparticles in Different Morphologies for Tropical Regions of Iran", JEM, Vol. 12, pp.130-143, 2022. https://doi.org/10.22052/12.1.130
[18] Fahim, T., Laouedj, S., Abderrahmane, A., Alotaibi, S., Younis, O., Muhammad Ali, H., "Heat Transfer Enhancement in Parabolic through Solar Receiver: A Three-Dimensional Numerical", Investigation, Nanomaterials, Vol. 12, pp. 419-425, 2022. https://doi.org/10.3390/nano12030419.
[19] Zaboli, M., Mousavi Ajarostaghi, S.S., Saedodin, S., Kiani, B., "Hybrid nanofluid flow and heat transfer in a parabolic trough solar collector with inner helical axial fins as turbulator", Eur. Phys. J. Plus, Vol. 136, pp. 841-860, 2021. https://doi.org/10.1140/epjp/s13360-021-01807-z.
[20] Jaramillo, O.A., Borunda, M., Velazquez-Lucho, K.M., Robles, M., "Parabolic trough solar collector for low enthalpy processes: an analysis of the efficiency enhancement by using twisted tape inserts", Renewable Energy, Vol. 93, pp. 125-141, 2016. https://doi.org/10.1016/j.renene.2016.02.046
[21] Zhu, X., Zhu, L., Zhao, J., "Wavy-tape insert designed for managing highly concentrated solar energy on absorber tube of parabolic trough receiver", Energy, Vol. 141, pp. 1146-1155, 2017. https://doi.org/10.1016/j.energy.2017.10.010.
[22] Chang, C., Xu, C., Wu, Z.Y., Li, X., Zhang, Q.Q., Wang, Z.F., "Heat Transfer Enhancement and Performance of Solar Thermal Absorber Tubes with Circumferentially Non-uniform Heat Flux", Energy Procedia, Vol. 69, pp. 320-327, 2015. https://doi.org/10.1016/j.egypro.2015.03.036.
[23] Şahin, H.M., Baysal, E., Rıza Dal, A., Şahin, N., "Investigation of heat transfer enhancement in a new type heat exchanger using solar parabolic trough systems", International Journal of Hydrogen Energy, Vol. 40, No. 44, pp. 15254-15266, 2015. https://doi.org/10.1016/j.ijhydene.2015.03.009.
[24] Song, X., Dong, G., Gao, F., Diao, X., Zheng, L., Zhou, F., "A numerical study of parabolic trough receiver with nonuniform heat flux and helical screw-tape inserts", Energy, Vol. 77, pp. 771-782, 2014. https://doi.org/10.1016/j.energy.2014.09.049.
[25] Liu, Y., Chen, Q., Hu, K., Hao, J.H., "Flow field optimization for the solar parabolic trough receivers in direct steam generation systems by the variational principle", International Journal of Heat and Mass Transfer, Vol. 102, pp. 1073-1081, 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.083.
[26] Too, Y.C.S., Benito, R., "Enhancing heat transfer in air tubular absorbers for concentrated solar thermal applications", Applied Thermal Engineering, Vol. 50, pp. 1076-1083, 2013. https://doi.org/10.1016/j.applthermaleng.2012.06.025.
[27] Benabderrahmane, A., Aminallah, M., Laouedj, S., Benazza, A., Solano, J.P., "Heat transfer enhancement in a parabolic trough solar receiver using longitudinal fins and nanofluids", Journal of Thermal Science, Vol. 25, pp. 410-417, 2016. https://doi.org/10.1007/s11630-016-0878-3.
[28] Xiangtao, G., Fuqiang, W., Haiyan, W., Jianyu, T., Qingzhi, L., Huaizhi, H., "Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting", Solar Energy, Vol. 144, pp. 185-202, 2017. https://doi.org/10.1016/j.solener.2017.01.020.
[29] Bellos, E., Tzivanidis, C., Daniil, I., "Thermal and exergetic evaluation of parabolic trough collectors with finned absorbers operating with air", Journal of Power Energy, Vol. 231, No. 7, pp. 631-644, 2017, https://doi.org/10.1177/0957650917712403.
[30] Che Sidik, N.A., Muhammad Yazid, M.N., "Samion, S., Nor Musa, M., Mamat, R., Latest development on computational approaches for nanofluid flow modeling: Navier–Stokes based multiphase models", International Communications in Heat and Mass Transfer, Vol. 74, pp. 114-124, 2016, https://doi.org/10.1016/j.icheatmasstransfer.2016.03.007
[31] Khan, I., Wang, M., Zhang, Y., Tian, W., Su, G.H., Qiu, S., "Two-phase bubbly flow simulation using CFD method: A review of models for interfacial forces, Progress in Nuclear Energy", Vol. 125, pp. 103360, 2020. https://doi.org/10.1016/j.pnucene.2020.103360.
[32] Alsabery, A.I., Abosinnee, A.S., Al-Hadraawy, S.K., Ismael, M.A., Fteiti, M.A., Hashim, I., Sheremet, M., Ghalambaz, M., Chamkha, A.J., "Convection heat transfer in enclosures with inner bodies: A review on single and two-phase nanofluid models", Renewable and Sustainable Energy Reviews, Vol. 183, pp. 113424, 2023, https://doi.org/10.1016/j.rser.2023.113424
[33] Amani, M., Amani, P., Kasaeian, A., Mahian, O., Yan, W.M., "Two-phase mixture model for nanofluid turbulent flow and heat transfer: Effect of heterogeneous distribution of nanoparticles", Chemical Engineering Science, Vol. 167, pp. 135-144, 2017. https://doi.org/10.1016/j.ces.2017.03.065.
[34] Fadodun, O.G., Kaood, A., Hassan, M.A., "Investigation of the entropy production rate of ferrosoferric oxide/water nanofluid in outward corrugated pipes using a two-phase mixture model", International Journal of Thermal Sciences, Vol. 178, pp. 587-598, 2022. https://doi.org/10.1016/j.ijthermalsci.2022.107598
[35] Shaheed, R., Mohammadian, A. Kheirkhah Gildeh, H. "A comparison of standard k–ε and realizable k–ε turbulence models in curved and confluent channels", Environ Fluid Mech, Vol. 19, pp. 543–568, 2019. https://doi.org/10.1007/s10652-018-9637-1.
[36] Izadi, M., Bastani, B., Sheremet, M.A., "Numerical simulation of thermogravitational energy transport of a hybrid nanoliquid within a porous triangular chamber using the two-phase mixture approach", Advanced Powder Technology, Vol. 31, pp. 2493-2504, 2020. https://doi.org/10.1016/j.apt.2020.04.011.
[37] Selimefendigil, F., Okulu, D. Mamur, H. "
Numerical analysis for performance enhancement of thermoelectric generator modules by using CNT–water and hybrid Ag/MgO–water nanofluids", J Therm Anal Calorim, Vol. 143, pp. 1611–1621, 2021.
https://doi.org/10.1007/s10973-020-09983-3.
[39] Sheikholeslami, M., Shehzad, S.A., "Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source", International Journal of Heat and Mass Transfer, Vol. 118, pp. 182-192, 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.113.
[39] Eok Kim, D., Hwan Kim, M., Eun Cha, J., Kim, S.O., "Numerical investigation on thermal–hydraulic performance of new printed circuit heat exchanger model", Nuclear Engineering and Design, Vol. 238, pp.3269-3276, 2008. https://doi.org/10.1016/j.nucengdes.2008.08.002.
[40] Wang, G., Dbouk, T., Wang, D., Pei, Y., Peng, X., Yuan, H., Xiang, S., "Experimental and numerical investigation on hydraulic and thermal performance in the tube-side of helically coiled-twisted trilobal tube heat exchanger", International Journal of Thermal Sciences, Vol. 153, pp. 106328, 2020. https://doi.org/10.1016/j.ijthermalsci.2020.106328
[41] Cheng, Z.D., He, L.Y., Cui, F.Q., "Numerical study of heat transfer enhancement by unilateral longitudinal vortex generators inside parabolic trough solar receivers", International Journal of Heat and Mass Transfer, Vol. 55, pp. 5631-5641, https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.057