استفاده از تئوری تصمیم‌گیری شکاف اطلاعاتی به‌منظور ارزیابی ظرفیت‌پذیری مزارع بادی در شبکۀ توزیع در حضور استراتژی‌های مدیریت انرژی شبکه

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی برق و کامپیوتر، دانشگاه بیرجند، بیرجند، ایران

چکیده

نگرانی‌های زیست‌محیطی استفاده از سوخت‌های فسیلی و منافع مالی دولت‌ها، لزوم نصب نیروگاه‌های تجدیدپذیر در شبکۀ توزیع را افزایش داده است. به‌منظور استفادۀ حداکثری از این منابع، محاسبۀ ظرفیت‌پذیری شبکه نیاز است. ظرفیت‌پذیری شبکۀ توزیع، حداکثر میزان تولید منابع تولید پراکنده، با توجه به قیود بهره‌برداری است. مزارع بادی، ازجمله منابع تجدیدپذیر کاربردی در شبکۀ قدرت است که عدم قطعیت‌های بهره‌برداری از شبکه را تشدید می‌کند. در این مقاله از تئوری تصمیم‌گیری مبتنی‌بر شکاف اطلاعاتی برای مدل‌سازی عدم قطعیت‌ توان خروجی مزارع بادی و بار شبکه استفاده می‌شود و چون مطالعه از دیدگاه بهره‌برداری است، پارامتر‌های غیرقطعی به‌صورت روزانه و برای 24 ساعت شبانه‌روز مدل‌سازی می‌گردند؛ سپس مقدار ظرفیت‌‌‌‌پذیری روزانۀ شبکه معرفی می‌شود. در این پژوهش مکان نصب مزارع بادی ثابت در نظر گرفته می‌شود و به‌منظور افزایش ظرفیت‌پذیری، از استراتژی‌های مدیریت انرژی شبکه استفاده می‌گردد. این استراتژی‌ها شامل جبران‌سازهای استاتیکی توان راکتیو، بازآرایی شبکه و کنترل‌کننده‌های ضریب توان است. صحت و دقت مدل‌سازی پیشنهادی بر روی شبکۀ 33 شینIEEE مورد مطالعه قرار گرفته است. نتایج شبیه‌سازی نشان داده‌اند که با ترکیب بهره‌برداری از هر سه استراتژی، افزایش ظرفیت‌پذیری شبکه همراه با افزایش شعاع عدم قطعیت رخ می‌دهد. کاربرد این مدل‌سازی در محاسبۀ سریع، دقیق و به‌دور از خطر ظرفیت‌پذیری است.

کلیدواژه‌ها

موضوعات


[1] Bollen, M., Hassan, F., Integration of Distributed Generation in the Power System, IEEE Press, 2011.
[2] Syahputra, R., Robandi, I., Ashari, M., "Performance improvement of radial distribution network with distributed generation integration using extended particle swarm optimization algorithm", International Review of Electrical Engineering (I.R.E.E.), Vol. 10, No. 2, pp. 293-304, 2015, http://doi.org/10.15866/iree.v10i2.5410.
[3] Patil, A., Girgaonkar, A., Musunuri, S. K., "Impacts of increasing photovoltaic penetration on distribution grid-voltage rise case study", in Proc. of the International Conference on Advances in Green Energy (ICAGE) , pp. 1-6., 2014, http://doi.org/10.1109/ICAGE.2014.7050150.
[4] Baran, M. E., Hooshyar, H., Zhan, S., Huang, A., "Accommodating High PV Penetration on Distribution Feeders", IEEE Transactions on Smart Grid, Vol. 3, No. 2, pp. 1039–1046, 2012,  http://doi.org/10.1109/TSG.2012.2190759.
[5] Pezeshki, H., Wolfs, P. J.,  Ledwich, G., "Impact of High PV Penetration on Distribution Transformer Insulation Life", IEEE Transactions on Power Delivery, Vol. 29, No. 3, pp. 1212-1220, 2014,  http://doi.org/10.1109/TPWRD.2013.2287002.
[6] Arefifar, A., Determination of Optimal Location and Value of Distributed Generation and reactive power sources simultaneously in distribution system, M.S. Thesis, Isfahan University of Technology, 1362, (in Persian).
[7] Ismael, S. M., Aleem, S. H. E. A., Abdelaziz, A. Y., Zobaa, A.F., "State-of-the-Art of hosting capacity in modern power systems with distributed generation", Renewable Energy, Vol. 130, pp. 1002-1020, 2019,  http://doi.org/10.1016/j.renene.2018.07.008.
[8] Abad, M. S. S., Ma, J., Han, X., Distribution systems hosting capacity assessment: relaxation and linearization, in Smart Power Distribution Systems, Academic Press, pp. 555-586, 2019, https://doi.org/10.1016/B978-0-12-812154-2.00023-7.
[9] Sahu, S. K., Ghosh, D., "Hosting capacity enhancement in distribution system in highly trenchant photo-voltaic environment: a hardware in loop approach", IEEE Access, Vol. 8, pp. 14440-14451, 2019, https://doi.org/10.1109/ACCESS.2019.2962263.
[10] Jin, W., Chen, L., Chen, H., Zheng, S., "A novel evaluation method of the hosting capacity of multiple renewable energy stations accessed into a power system", Energy Reports, Vol. 9, pp. 56–65, 2023, https://doi.org/10.1016/j.egyr.2023.05.089.
[11] Alturki, M., Khodaei, A., Paaso, A., Bahramirad, S., "Optimization-Based distribution grid hosting capacity calculations", Applied Energy, Vol. 219, pp. 350-360, 2018, https://doi.org/10.1016/j.apenergy.2017.10.127.
[12] Taheri, S., Jalali, M., Kekatos, V., Tong, L., "Fast probabilistic hosting capacity analysis for active distribution systems", IEEE Transactions on Smart Grid, Vol. 12, No. 3, pp. 2000-2012, 2021, https://doi.org/10.1109/TSG.2020.3038651.
[13] Al-Saadi, H., Zivanovic, R., Al-Sarawi, S. F., "Probabilistic hosting capacity for active distribution networks", IEEE Transactions on Industrial Applications, Vol. 13, No. 5, pp. 2519-2532, 2017, https://doi.org/10.1109/TII.2017.2698505.
[14] Santos, S. F., Fitiwi, D. Z., Shafie-Khah, M., Bizuayehu, A. W., Cabrita, C. M. P., Catalao, J. P. S., "New multistage and stochastic mathematical model for maximizing res hosting capacity - part i: problem formulation", IEEE Transactions on Sustainable Energy, Vol. 8, No. 1, pp. 304-319, 2017, https://doi.org/10.1109/TSTE.2016.2598400.
[15] Soroudi, A., Rabiee, A., Kean, A., "Distribution networks' energy losses versus hosting capacity of wind power in the presence of demand flexibility", Renewable Energy, Vol. 102, pp. 316-325, 2017, https://doi.org/0.1016/j.renene.2016.10.051.
[16] Gush, T., Kim, C. H., Admasie, S., Kim, J. S., Song, J. S., "Optimal smart inverter control for PV and BESS to improve PV hosting capacity of distribution networks using slime mould algorithm", IEEE Access, Vol. 9, pp. 52164-52176, 2021, https://doi.org/10.1109/ACCESS.2021.3070155.
[17] Navarro-Espinosa, A., Ochoa, L. F., "Increasing the PV hosting capacity of LV networks OLTC-Fitted transformers Vs. reinforcements", IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2015, https://doi.org/10.1109/ISGT.2015.7131856.
[18] Li, J., Ge, S., Liu, H., Hou, T., Wang, P., Xing, P., "An improved IGDT approach for distributed generation hosting capacity evaluation in multi-feeders distribution system with soft open points", International Journal of Electrical Power and Energy Systems, Vol. 154, 2023, https://doi.org/10.1016/j.ijepes.2023.109404.
[19] Davoudi, M., Cecchi, V., Aguero, J. R., "Network reconfiguration with relaxed radiality constraint for increased hosting capacity of distribution systems", IEEE Power and Energy Society General Meeting (PESGM), 2016, https://doi.org/10.1109/PESGM.2016.7741555.
[20] Capitanescu, F., Ochoa, L. F., Margossian, H., Hatziargyriou, N. D., "Assessing the potential of network reconfiguration to improve distributed generation hosting capacity in active distribution systems", IEEE Transactions on Power Systems, Vol. 30, No. 1, pp. 346-356, 2015, https://doi.org/ 10.1109/TPWRS.2014.2320895.
[21] Ikeda, S., Ohmori, H., "Evaluation for maximum hosting capacity of distributed generation considering active network management", International Journal of Electrical and Electronic Engineering  Telecommunications, Vol. 7, No. 3, pp. 96-102, 2018, https://doi.org/10.18178/ijeetc.7.3.96-102.
[22] Wang, S., Chen, S., Ge, L., Wu, L., "Distributed generation hosting capacity evaluation for distribution systems considering the robust optimal operation of OLTC and SVC", IEEE Transactions on Sustainable Energy, Vol. 7, No. 3, pp. 1111-1123, 2016,  https://doi.org/10.1109/TSTE.2016.2529627.
[23] Xiao, J., Li, Y., Qiao, X., Tan, Y., Cao, Y., Jiang, L., "Enhancing hosting capacity of uncertain and correlated wind power in distribution network with ANM strategies", IEEE Access, Vol. 8, pp. 189115-189128, 2020,  https://doi.org/10.1109/ACCESS.2020.3030705.
[24] Arshad, A., Lehtonen, M., "A stochastic assessment of PV hosting capacity enhancement in distribution network utilizing voltage support techniques", IEEE Access, Vol. 7, pp. 46461-46471, 2019, https://doi.org/10.1109/ACCESS.2019.2908725.
[25] Ramezani, M., Assessment of available transfer capability of transmission network in the presence of wind farms, Ph.D. dissertation, Tarbiat Modares University, 1387, (in Persian).
[26] Aboli, R., Ramezani, M., Falaghi, H., "A hybrid robust distributed model for short-term operation of multimicrogrid distribution networks", Electric Power Systems Research, Vol. 177, 2019, https://doi.org/10.1016/j.epsr.2019.106011.
[27] O’Connell, A., Soroudi, A., Keane, A., "Distribution network operation under uncertainty using information gap decision theory", IEEE Transactions On Smart Grid, Vol. 9, No. 3, pp. 1848-1858, 2018,  https://doi.org/10.1109/TSG.2016.2601120.
[28] Kennedy, J., Eberhart, R., "Particle swarm optimization", International Conference on Neural Networks (ICNN’95), Vol. 4, pp. 1942-1948, 1995, https://doi.org/10.1109/ICNN.1995.488968.
[29] Ramezani, M., Haghifam, M. R., Singh, C., Seifi, H., Parsa Moghaddam, M., "Determination of capacity benefit margin in multiarea power systems using particle swarm optimization", IEEE Transactions On Power Systems, Vol. 24, No. 2, pp. 631-641, 2009,  https://doi.org/10.1109/TPWRS.2008.2005712.
[30] Hooshmand, E., Rabiee, A., "Robust model for optimal allocation of renewable energy sources, energy storage systems and demand response in distribution systems via information gap decision theory", IET Generation, Transmission  Distribution, Vol. 13, No. 4, pp. 511-520, 2019, https://doi.org/10.1049/iet-gtd.2018.5671.
[31] Ismael, S. M., Abdel Aleem, S. H. E., Abdelaziz, A. Y., Zobaa, A. F., Distributed generation in deregulated energy markets and probabilistic hosting capacity decision-making challenges, in Decision Making Applications in Modern Power Systems, Academic Press, pp. 223-246, 2020
[32] Jin, X., Zhao, J., Sun, Y., Li, K., Zhang, B., "Distribution network reconfiguration for load balancing using binary particle swarm optimization", International Conference on Power System Technology, Singapore, Vol. 1, pp. 507-510, 2004,  https://doi.org/10.1109/ICPST.2004.1460047.
[33] Li, P., Ji, H., Wang, C., Zhao, J., Song, G., Ding, F., Wu, J., "Coordinated control method of voltage and reactive power for active distribution networks based on soft open point", IEEE Transactions on Sustainable Energy, Vol. 8, No. 4, pp. 1430-1442, 2017, https://doi.org/10.1109/TSTE.2017.2686009.