ساخت و بررسی خواص بلوری، ساختاری و نوری مواد نیم‌رسانای چهارتایی استنیت متقارن CFTS برای کاربرد در سلول‏های خورشیدی نسل نو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری پژوهشکده علوم و فناوری نانو، دانشگاه کاشان، کاشان، ایران

2 پژوهشکده علوم و فناوری نانو، دانشگاه کاشان، کاشان، ایران

چکیده

ذرات نیم‌رسانایCFTS  با ساختار (Cu2FeSnS4) به‌عنوان یکی از جدیدترین مواد درزمینۀ لایۀ جاذب سلول‏های خورشیدی لایۀ نازک و لایۀ واسط در سلول‏های خورشیدی پروسکایت مورد توجه پژوهشگران قرار گرفته است. این ساختار نوع P ، به‌دلیل استفاده از عناصر فراوان در پوستۀ زمین، نوار انرژی مستقیم در محدودۀ شدت تابش خورشید و ضریب جذب بالا (104 cm−1) امیدها را برای دستیابی به ساختاری کارآمد با هزینۀ پایین به‌شدت افزایش داده است. ساخت نانو ذرات نیم‌رسانای CFTS از طریق فرایند سولوترمال با پیش‌ماده‏های در دسترس و ارزان انجام شد. به جهت بررسی میزان بلورینگی و جهت رشد بلوری ساختار از آنالیز XRD، توپوگرافی ذرات ازطریق تصویربرداری میکروسکوپ الکترونی روبشیFE-SEM  و درصد عناصر ساختار ازطریق آنالیز EDS انجام شد. ازطریق طیف‏سنجی UV-Vis و با آنالیز طیف جذب ساختار، نوار انرژی ذرات محاسبه شد. نتایج حاصل از آنالیز XRD، نشانگر تشکیل ساختاری با خلوص بالا و میزان بلورینگی مطلوب بود. اندازۀ متوسط ذرات در محدودۀ m1-2μ به دست آمد و ذرات به‌صورت کره‏های یکنواخت با سطحی ورقه‏ای شکل ساخته شدند. نتایج حاصل از آنالیز EDS نشانگر درصد مطلوب عناصر ساختار بود و میزان نوار انرژی ذرات در محدودۀ eV 43/1 محاسبه شد که با مقادیر گزارش‌شده مطابقت خوبی دارد.

کلیدواژه‌ها

موضوعات


[1] Yu, J., Deng, H., Zhang, Q., Tao, J., Sun, L., Yang, P., Chu, J., "The role of tuning Se/(S+ Se) ratio in the improvement of Cu2MnSn (S, Se) 4 thin films properties and photovoltaic device performance", Solar Energy, Vol. 179, pp. 279-285, 2019 https://doi.org/10.1016/j.solener.2018.12.076
[2] Zahedifar, M., Ghanbari, E., Moradi, M., Saadat, M., "Optimized annealing regime of CuGaSe2 nanoparticles prepared by solvothermal method", physica status solidi (a), Vol. 212, No. 3, pp. 657-661, 2015. https://doi.org/10.1002/pssa.201431543
[3] Talebi, B., Moradi, M., "Solvothermal synthesis of CMTS quaternary semiconductor nanoparticles with a symmetric kesterite structure: The role of the autoclave filling factor", Nano-Structures & Nano-Objects, Vol 35, 101008, 2023. ‏ https://doi.org/10.1016/j.nanoso.2023.101008
[4] Saadat, M., Amiri, O., Mahmood, P., "Analysis and performance assessment of CuSbS2-based thin-film solar cells with different buffer layers", The European Physical Journal Plus, Vol. 137, No. 5, p. 582, 2022. https://doi.org/10.1140/epjp/s13360-022-02804-6
[5] Moradi, M., Teimouri, R., Saadat, M., Zahedifar, M., "Buffer layer replacement: a method for increasing the conversion efficiency of CIGS thin film solar cells", Optik, Vol. 136, pp. 222-227, 2017. https://doi.org/10.1016/j.ijleo.2017.02.037
[6] Talebizadeh, P., Mehrabian, M.A., Abdolzadeh, M., "Effect of solar angles on incident energy of the flat collectors", Energy Engineering and Management, Vol. 2, No. 4, pp. 12-23, 2013. https://energy.kashanu.ac.ir/article_113302.html
[7] Khorasanizadeh, H., Meschi, S.M. "Determination of the monthly, seasonal, semi-yearly and yearly optimum tilt angles of flat plate solar collectors in Kashan", Energy Engineering and Management, Vol. 3, No. 4, pp. 38-49, 2014.(In Persian) https://energy.kashanu.ac.ir/article_113329.html
[8] Ahmadzadehtalatapeh, M., "Application of solar thermal collectors to improve the energy performance of the fresh air HVAC systems", Energy Engineering and Management, Vol. 6, No. 4, pp. 44-53, 2016. https://energy.kashanu.ac.ir/article_113402.html
[9] Ghorbani, T., Zahedifar, M., Moradi, M., Ghanbari, E., "Efficiency enhancement of CIGS solar cells with the appropriate combination of CdS and CdSe buffer layers: simulation by silvaco software", Energy Engineering and Management, Vol. 12, No. 3, pp. 122-129, 2022.(In Persian) https://doi.org/10.22052/12.3.122
[10] Rajabi, Z., Moradi, M., Zahedifar, M., "Back contact selenization and absorber layer etching for improvement in Schottky diode behavior of [Mo/CIGS/Al] structure", Materials Research Express, Vol. 6, No. 6, p. 065501, 2019. https://doi.org/10.1016/j.ijleo.2017.02.037
[11] Saadat, M., Amiri, O., "Fine adjusting of charge carriers transport in absorber/HTL interface in Sb2 (S, Se) 3 solar cells", Solar Energy, Vol. 243, pp. 163-173, 2022. https://doi.org/10.1016/j.solener.2022.07.047
[12] Saadat, M., Moradi, M., Zahedifar, M., "Optimization of Zn (O, S)/(Zn, Mg) O buffer layer in Cu (In, Ga) Se 2 based photovoltaic cells", Journal of Materials Science: Materials in Electronics, Vol. 27, pp. 1130-1133, 2016. https://doi.org/10.1007/s10854-015-3861-y
[13] Moradi, M., Teimouri, R., Zahedifar, M., Saadat, M., "Optimization of Cd1− yZnyS buffer layer in Cu (In, Ga) Se2 based thin film solar cells", Optik, Vol. 127, No. 8, pp. 4072-4075, 2016. https://doi.org/10.1016/j.ijleo.2016.01.100
[14] Saadat, M., Amiri, O., Mahmood, P.H., "Potential efficiency improvement of CuSb (S1-x, Sex) 2 thin film solar cells by the Zn (O, S) buffer layer optimization", Solar energy, Vol. 225, pp. 875-881, 2021. https://doi.org/10.1016/j.ijleo.2016.01.100
[15] Saadat, M., Amiri, O., Rahdar, A., "Optimization of (Zn, Sn) O buffer layer in Cu (In, Ga) Se2 based solar cells", Solar Energy, Vol. 189, pp. 464-470, 2019. https://doi.org/10.1016/j.solener.2019.07.093
[16] Saadat, M., Moradi, M., Zahedifar, M., "CIGS absorber layer with double grading Ga profile for highly efficient solar cells", Superlattices and Microstructures, Vol. 92, pp. 303-307, 2016. https://doi.org/10.1016/j.spmi.2016.02.036
[17] Gershon, T., Bishop, D., Antunez, P., Singh, S., Brew, K.W., Lee, Y.S., Gunawan, O., Gokmen, T., Todorov, T., Haight, R., "Unconventional kesterites: The quest to reduce band tailing in CZTSSe", Current Opinion in Green and Sustainable Chemistry, Vol. 4, pp. 29-36, 2017. https://doi.org/10.1016/j.cogsc.2017.01.003
[18] Guo, L., Zhu, Y., Gunawan, O., Gokmen, T., Deline, V.R., Ahmed, S., Romankiw, L.T., Deligianni, H., "Electrodeposited Cu2ZnSnSe4 thin film solar cell with 7% power conversion efficiency", Progress in Photovoltaics: Research and Applications, Vol. 22, No. 1, pp. 58-68, 2014. https://doi.org/10.1002/pip.2332
[19] Li, J., Kim, S., Nam, D., Liu, X., Kim, J., Cheong, H., Liu, W., Li, H., Sun, Y., Zhang, Y., "Tailoring the defects and carrier density for beyond 10% efficient CZTSe thin film solar cells", Solar Energy Materials and Solar Cells, Vol. 159, pp. 447-455, 2017. https://doi.org/10.1016/j.solmat.2016.09.034
[20] Haghighi, M., Minbashi, M., Taghavinia, N., Kim, D.-H., Mahdavi, S.M., Kordbacheh, A.A., "A modeling study on utilizing SnS2 as the buffer layer of CZT (S, Se) solar cells", Solar Energy, Vol. 167, pp. 165-171, 2018. https://doi.org/10.1016/j.solener.2018.04.010
[21] Adelifard, M., "Preparation and characterization of Cu2FeSnS4 quaternary semiconductor thin films via the spray pyrolysis technique for photovoltaic applications", Journal of analytical and applied pyrolysis, Vol. 122, pp. 209-215, 2016. https://doi.org/10.1016/j.jaap.2016.09.022
[22] Ozel, F., Aslan, E., Istanbullu, B., Akay, O., Patir, I.H., "Photocatalytic hydrogen evolution based on Cu2ZnSnS4, Cu2NiSnS4 and Cu2CoSnS4 nanocrystals", Applied Catalysis B: Environmental, Vol. 198, pp. 67-73, 2016. https://doi.org/10.1016/j.apcatb.2016.05.053
[23] Madhusudanan, S.P., Kumar, M.S., Mohanta, K., Batabyal, S.K., "Photoactive Cu2FeSnS4 thin films: Influence of stabilizers", Applied Surface Science, Vol. 535, p. 147600, 2021. https://doi.org/10.1016/j.apsusc.2020.147600
[24] Wang, S., Ma, R., Wang, C., Li, S., Wang, H., "Incorporation of Rb cations into Cu2FeSnS4 thin films improves structure and morphology", Materials Letters, Vol. 202, pp. 36-38, 2017. https://doi.org/10.1016/j.matlet.2017.05.079
[25] Meng, X., Deng, H., Tao, J., Cao, H., Li, X., Sun, L., Yang, P., Chu, J., "Heating rate tuning in structure, morphology and electricity properties of Cu2FeSnS4 thin films prepared by sulfurization of metallic precursors", Journal of Alloys and Compounds, Vol. 680, pp. 446-451, 2016. https://doi.org/10.1016/j.jallcom.2016.04.166
[26] Wang, S., Ma, R., Wang, C., Li, S., Wang, H., "Fabrication and photoelectric properties of Cu2FeSnS4 (CFTS) and Cu2FeSn (S, Se) 4 (CFTSSe) thin films", Applied Surface Science, Vol. 422, pp. 39-45, 2017. https://doi.org/10.1016/j.apsusc.2017.05.244
[27] Chatterjee, S., Pal, A.J., "A solution approach to p-type Cu2FeSnS4 thin-films and pn-junction solar cells: role of electron selective materials on their performance", Solar Energy Materials and Solar Cells, Vol. 160, pp. 233-240, 2017. https://doi.org/10.1016/j.solmat.2016.10.037
[28] Kumar, M.S., Madhusudanan, S.P., Batabyal, S.K., "Substitution of Zn in EarthAbundant Cu2ZnSn (S, Se) 4 based thin film solar cells–A status review", Solar Energy Materials and Solar Cells, Vol. 185, pp. 287-299, 2018. https://doi.org/10.1016/j.solmat.2018.05.003
[29] Vanalakar, S.A., Patil, P.S., Kim, J.H., "Recent advances in synthesis of Cu2FeSnS4 materials for solar cell applications: a review", Solar Energy Materials and Solar Cells, Vol. 182, pp. 204-219, 2018. https://doi.org/10.1016/j.solmat.2018.03.021
[30] Khadka, D.B., Kim, J., "Structural transition and band gap tuning of Cu2 (Zn, Fe) SnS4 chalcogenide for photovoltaic application", The Journal of Physical Chemistry C, Vol. 118, No. 26, pp. 14227-14237, 2014. https://doi.org/10.1021/jp503678h
[31] Hall, S., Szymanski, J., Stewart, J., "Kesterite, Cu< 2)(Zn, Fe) SnS< 4), and stannite, Cu< 2)(Fe, Zn) SnS< 4), structurally similar but distinct minerals", The Canadian Mineralogist, Vol. 16, No. 2, pp. 131-137, 1978. https://doi.org/10.2113/gscanmin.41.3.639
[32] Gao, Y., Long, F., Wang, J., Zhang, J., Mo, S., Zou, Z., "Understanding the growth mechanism of wurtzite Cu2ZnSnS4 nanocrystals and the photodegradation properties", Materials & Design, Vol. 123, pp. 24-31, 2017. https://doi.org/10.1016/j.matdes.2017.03.012