نقش مدولاسیون عرض در افزایش راندمان ژنراتورهای ترموالکتریکی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی برق و کامپیوتر، دانشگاه کاشان، کاشان، ایران

چکیده

در این مقاله، خصوصیات ترموالکتریکی ساختارهای مبتنی بر گرافن با استفاده از روش تنگ-بست و به‌کارگیری روابط لاندائور-بوتیکر مورد بررسی قرار گرفته‌اند. هرچند کاهش عرض نوار گرافنی می‌تواند منجر به افزایش ضریب شایستگی ترموالکتریکی شود، طراحی مناسب نانوساختار همچنان امکان‌پذیر است. برطبق نتایج به‌دست‌آمده مشخص شد که با تغییر متناوب عرض نوار که به‌عنوان مدولاسیون عرض نوار نیز شناخته می‌شود، می‌توان ضرایب شایستگی ترموالکتریکی را تا دوبرابر مقدار مربوط به نوار با عرض باریک افزایش داد. همچنین نتایج نشان می‌دهند درصورتی‌که تغییر عرض نوار به‌صورت تدریجی ایجاد شده باشد، ضرایب شایستگی ترموالکتریکی تا سه برابر مقدار مربوط به نوار با عرض باریک قابل دستیابی است. علت این افزایش را می‌توان بیشتر شدن شکاف انرژی و درنتیجه، افزایش ضریب سیبک و فاکتور توان و همچنین کاهش هم‌زمان هدایت حرارتی بیان نمود.

کلیدواژه‌ها

موضوعات


[1] Garcia-Martinez, J., Nanotechnology for the Energy Challenge, 2nd Edition, Wiley Publishing, 2013.
[2] Nolas, G., Sharp, J., Goldsmid, H., Thermoelectrics: Basic Principles New Materials Developments, Springer, 2001.
[3] Harman, T., Taylor, P., Walsh, M., LaForge, B., "Quantum dot superlattice thermoelectric materials devices", Science, Vol. 297, pp. 2229-2232, 2002. https://doi.org/10.1126/science.1072886
[4] Snyder, G. J., "Small thermoelectric generators", the electrochemical society interface, Vol. 17, pp. 54-58, 2008. https://doi.org/10.1149/2.F06083IF
[5] Snyder, G. J., Toberer, E. S., "Complex thermoelectric materials", Nature Materials, Vol. 7, pp. 105-114, 2008. https://doi.org/10.1038/nmat2090
[6] Goldsmid, H. J., Introduction to Thermoelectricity, 2nd Edition, Springer, 2009.
[7] Dresselhause, M., et al., "New directions for low dimensional thermoelectric materials", Advanced Materials, Vol. 19, pp. 1043-1053, 2007. https://doi.org/10.1002/adma.200600527
[8] Keskar, G., Lyyamperumal, E., Hitchcock, D. A., Rao, A. M., "Significant improvement of thermoelectric performance in nanostructured bismuth networks", Nano Energy, Vol. 1, pp. 706-713, 2012. https://doi.org/10.1016/j.nanoen.2012.06.005
[9] Hicks, L. D., Harman, T. C., Sun, X., Dresselhaus, M. S., "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merrit", Physical Review B, Vol. 53, pp. 10493-10496, 1996. https://doi.org/10.1103/PhysRevB.53.R10493
[10] Zuev, Y. M., Lee, J. S., Galloy, C., Park, H., Kim, P., "Diameter dependence of the transport properties of antimony telluride nanowires", Nano Letters, Vol. 10, pp. 3037-3040, 2010. https://doi.org/10.1021/nl101505q
[11] Venkatasubramanian, R., Colpitts, T., "enhancement in figure of merit with superlattice structures for thin-film thermoelectric devices", Materials Research Society, Vol. 478, pp. 73-84, 1997. https://doi.org/10.1557/PROC-478-73
[12] Chen, G., "Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures", Journal Heat Transfer, Vol. 119, pp. 220-229, 1997. https://doi.org/10.1115/1.2824212
[13] Beyer, H., et al., "PbTe based superlattice structures with high thermoelectric efficiency", Applied Physics Letter, Vol. 80, pp. 1216-1218, 2002. https://doi.org/10.1063/1.1448388
[14] Donadio, D., Galli, G., "Atomistic simulations of heat transport in silicon nanowires", Physical Review Letter, Vol. 102, p. 195901, 2009. https://doi.org/10.1103/PhysRevLett.102.195901
[15] Zhou, W. X., Shihua, T., Chen, K. Q. Wenping, H., "Enhancement of thermoelectric performance in inas nanotubes by tuning quantum confinement effect", Journal of Applied Physics, Vol. 115, p. 124308, 2014. https://doi.org/10.1063/1.4869745
[16] Sevincli, H., Cuniberti, G., "Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons", Physical Review B, Vol. 81, p. 113401, 2010. https://doi.org/10.1103/PhysRevB.81.113401
[17] Novoselov, K. S., Geim, A. K., "Electric field effect in atomically thin carbon film", Science, Vol. 306, pp. 666-669, 2004. https://doi.org/10.1126/science.1102896
[18] Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K., "The electronic properties of graphene", Reviews of Modern Physics, Vol. 81, pp. 109-162, 2009. https://doi.org/10.1103/RevModPhys.81.109
[19] Pop, E., Varshney, V., Roy, A. K., Thermal properties of graphene: fundamentals and applications, Cambridge University Press, 2012.
[20] Andrew, R. C., Mapasha, R. E., Ukpong, A. M., Chetty, N., "Mechanical properties of graphene and boronitrene", Physical Review B, Vol. 85, p. 125428, 2012. https://doi.org/10.1103/PhysRevB.85.125428
[21] Ouyang, Y., Guo, J., "A theoretical study on thermoelectric performance of graphene nanoribbons", Appl. Phys. Lett., Vol. 94, p. 263107, 2009. https://doi.org/10.1063/1.3171933
[22] Ni, X., Liang, G., Wang, J. S., Li, B., "Disorder enhances thermoelectric figure of merit in armchair graphene nanoribbons", Appl. Phys. Lett., Vol. 95, p. 192114, 2009. https://doi.org/10.1063/1.3264087
[23] Sevincli, H., Cunibetti, G., "Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons", Physical Review B, Vol. 81, p. 113401, 2010. https://doi.org/10.1103/PhysRevB.81.113401
[24] Zianni, X., "Diameter-Modulated nanowires as candidates for high thermoelectric energy conversion efficiency", Appl. Phys. Lett., Vol. 97, p. 233106, 2010. https://doi.org/10.1063/1.3523360
[25] Mazzamuto, F., et al., "Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons", Physical Review B, Vol. 83, p. 235426, 2011. https://doi.org/10.1103/PhysRevB.83.235426
[26] Datta, S., Quantum Transport: Atom to Transistor, Cambridge University Press, 2005.
[27] Jiang, J. W., Wang, J. S., Li, B., "A nonequilibrium Green’s function study of thermoelectric properties in single-walled carbon nanotubes", Journal of Applied Physics, Vol. 109, pp. 1-31, 2010. https://doi.org/10.1063/1.3531573
[28] Seni, H., Karamitaheri, H., "Thermal conductance engineering by structural modification of width modulated graphene nanoribbons", Journal of Nanoelectronics and Optoelectronics, Vol. 14, pp. 204-210, 2019. https://doi.org/10.1166/jno.2019.2474