[1] Garcia-Martinez, J., Nanotechnology for the Energy Challenge, 2nd Edition, Wiley Publishing, 2013.
[2] Nolas, G., Sharp, J., Goldsmid, H., Thermoelectrics: Basic Principles New Materials Developments, Springer, 2001.
[3] Harman, T., Taylor, P., Walsh, M., LaForge, B., "Quantum dot superlattice thermoelectric materials devices", Science, Vol. 297, pp. 2229-2232, 2002. https://doi.org/10.1126/science.1072886
[4] Snyder, G. J., "Small thermoelectric generators", the electrochemical society interface, Vol. 17, pp. 54-58, 2008. https://doi.org/10.1149/2.F06083IF
[5] Snyder, G. J., Toberer, E. S., "Complex thermoelectric materials", Nature Materials, Vol. 7, pp. 105-114, 2008. https://doi.org/10.1038/nmat2090
[6] Goldsmid, H. J., Introduction to Thermoelectricity, 2nd Edition, Springer, 2009.
[7] Dresselhause, M., et al., "New directions for low dimensional thermoelectric materials", Advanced Materials, Vol. 19, pp. 1043-1053, 2007. https://doi.org/10.1002/adma.200600527
[8] Keskar, G., Lyyamperumal, E., Hitchcock, D. A., Rao, A. M., "Significant improvement of thermoelectric performance in nanostructured bismuth networks", Nano Energy, Vol. 1, pp. 706-713, 2012. https://doi.org/10.1016/j.nanoen.2012.06.005
[9] Hicks, L. D., Harman, T. C., Sun, X., Dresselhaus, M. S., "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merrit", Physical Review B, Vol. 53, pp. 10493-10496, 1996. https://doi.org/10.1103/PhysRevB.53.R10493
[10] Zuev, Y. M., Lee, J. S., Galloy, C., Park, H., Kim, P., "Diameter dependence of the transport properties of antimony telluride nanowires", Nano Letters, Vol. 10, pp. 3037-3040, 2010. https://doi.org/10.1021/nl101505q
[11] Venkatasubramanian, R., Colpitts, T., "enhancement in figure of merit with superlattice structures for thin-film thermoelectric devices", Materials Research Society, Vol. 478, pp. 73-84, 1997. https://doi.org/10.1557/PROC-478-73
[12] Chen, G., "Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures", Journal Heat Transfer, Vol. 119, pp. 220-229, 1997. https://doi.org/10.1115/1.2824212
[13] Beyer, H., et al., "PbTe based superlattice structures with high thermoelectric efficiency", Applied Physics Letter, Vol. 80, pp. 1216-1218, 2002. https://doi.org/10.1063/1.1448388
[14] Donadio, D., Galli, G., "Atomistic simulations of heat transport in silicon nanowires", Physical Review Letter, Vol. 102, p. 195901, 2009. https://doi.org/10.1103/PhysRevLett.102.195901
[15] Zhou, W. X., Shihua, T., Chen, K. Q. Wenping, H., "Enhancement of thermoelectric performance in inas nanotubes by tuning quantum confinement effect", Journal of Applied Physics, Vol. 115, p. 124308, 2014. https://doi.org/10.1063/1.4869745
[16] Sevincli, H., Cuniberti, G., "Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons", Physical Review B, Vol. 81, p. 113401, 2010. https://doi.org/10.1103/PhysRevB.81.113401
[17] Novoselov, K. S., Geim, A. K., "Electric field effect in atomically thin carbon film", Science, Vol. 306, pp. 666-669, 2004. https://doi.org/10.1126/science.1102896
[18] Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K., "The electronic properties of graphene", Reviews of Modern Physics, Vol. 81, pp. 109-162, 2009. https://doi.org/10.1103/RevModPhys.81.109
[19] Pop, E., Varshney, V., Roy, A. K., Thermal properties of graphene: fundamentals and applications, Cambridge University Press, 2012.
[20] Andrew, R. C., Mapasha, R. E., Ukpong, A. M., Chetty, N., "Mechanical properties of graphene and boronitrene", Physical Review B, Vol. 85, p. 125428, 2012. https://doi.org/10.1103/PhysRevB.85.125428
[21] Ouyang, Y., Guo, J., "A theoretical study on thermoelectric performance of graphene nanoribbons", Appl. Phys. Lett., Vol. 94, p. 263107, 2009. https://doi.org/10.1063/1.3171933
[22] Ni, X., Liang, G., Wang, J. S., Li, B., "Disorder enhances thermoelectric figure of merit in armchair graphene nanoribbons", Appl. Phys. Lett., Vol. 95, p. 192114, 2009. https://doi.org/10.1063/1.3264087
[23] Sevincli, H., Cunibetti, G., "Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons", Physical Review B, Vol. 81, p. 113401, 2010. https://doi.org/10.1103/PhysRevB.81.113401
[24] Zianni, X., "Diameter-Modulated nanowires as candidates for high thermoelectric energy conversion efficiency", Appl. Phys. Lett., Vol. 97, p. 233106, 2010. https://doi.org/10.1063/1.3523360
[25] Mazzamuto, F., et al., "Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons", Physical Review B, Vol. 83, p. 235426, 2011. https://doi.org/10.1103/PhysRevB.83.235426
[26] Datta, S., Quantum Transport: Atom to Transistor, Cambridge University Press, 2005.
[27] Jiang, J. W., Wang, J. S., Li, B., "A nonequilibrium Green’s function study of thermoelectric properties in single-walled carbon nanotubes", Journal of Applied Physics, Vol. 109, pp. 1-31, 2010. https://doi.org/10.1063/1.3531573
[28] Seni, H., Karamitaheri, H., "Thermal conductance engineering by structural modification of width modulated graphene nanoribbons", Journal of Nanoelectronics and Optoelectronics, Vol. 14, pp. 204-210, 2019. https://doi.org/10.1166/jno.2019.2474