تحلیل اقتصادی، اگزرژی و زیست محیطی کلکتور خورشیدی سهموی با توربولاتور حاوی نانوسیال هیبریدی پلیمری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، واحد پردیس، دانشگاه آزاد اسلامی، شهر پردیس، ایران

3 گروه مهندسی شیمی، دانشکده فنی و مهندسی، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

چکیده

محدود بودن منابع سوخت‌های فسیلی و مشکلات ناشی از انتشارات گازهای گلخانه‌ای، توجه بیش از پیش به انرژی‌های تجدیدپذیر، به‌ویژه انرژی خورشیدی را بر همگان روشن و ضروری کرده است. همچنین افزایش راندمان تجهیزات مربوط به این گروه از انرژی‌ها باعث افزایش بهره‌وری، کاهش هزینۀ سوخت، برق و کیفیت بهتر هوا می‌شود. هدف این مطالعه طراحی یک هندسۀ جدید برای توربولاتورهاست که با افزایش عدد ناسلت و افت فشار منطقی، منجر به افزایش راندمان در کلکتورهای خورشیدی، به‌ویژه در عدد رینولدز بالاتر شود. لذا به این منظور شاخص هیدرولیکی-حرارتی بر اساس افت فشار و عدد ناسلت، تعریف و تغییرات آن بررسی شده است. علاوه بر این، ویژگی‌های انتقال حرارت و عملکرد نانوسیال‌های هیبریدی نانولولۀ کربنی چندجداره-اکسید مس/آب در کسر حجمی 2 تا 6 درصد از نانوذرات در اعداد رینولدز 12000 تا 18000 در لولۀ جاذب کلکتور خورشیدی مورد بررسی قرار گرفته است. در این مطالعه به‌منظور اتصال معادلات سرعت و فشار از الگوریتم سیمپل استفاده می‌شود. نتایج حاصل از مطالعه برای دو نمونه نوار پیچ‌خورده با دو شکل هندسی مختلف (1 و ۵) به‌ترتیب برای نمونه‌های A و B مورد بررسی قرار گرفته است. بر اساس نتایج به‌دست‌آمده حداکثر عملکرد حرارتی در عدد رینولدز 12000 و کسرحجمی 2% برای نوار پیچ خورده در نسبت پیچش 1 برابر ۵۲/۳ است؛ درحالی‌که این میزان هنگام استفاده از نوار پیچ‌خورده در نسبت پیچش ۵/۰ برابر 3/3 است. لذا به لحاظ شاخص هیدرولیکی-حرارتی استفاده از نوار پیچ‌خورده با نسبت پیچش 1 به‌عنوان حالت بهینه انتخاب می‌شود.

کلیدواژه‌ها


  • [1] Borunda, M., R. Garduno-Ramirez, and O. Jaramillo, "Optimal operation of a parabolic solar collector with twisted-tape insert by multi-objective genetic algorithms", Renewable Energy, 143: p. 540-550, 2019., doi:10.1016/j.renene.2019.05.030
  • [2] Duan, Z., Yin, Q., Li, C., Dong, L., Bai, Y., Zhang, Y., "Milling force and surface morphology of 45 steel under different Al2O3 nanofluid concentrations", The International Journal of Advanced Manufacturing Technology, Vol. 107, pp. 1277-1296, 2020., doi:10.1007/s00170-020-04969-9
  • [3] Kumar, R. and P. Chand, "Performance prediction of extended surface absorber solar air collector with twisted tape inserts", Solar Energy, Vol. 169: pp. 40-48, 2018., doi:10.1016/j.solener.2018.04.021
  • [4] Liu, X., Rao, R., Shi, J., He, J., Zhao, Y., Liu, J., Du, H., "Effect of oxygen vacancy and A-site-deficiency on the dielectric performance of BNT-BT-BST relaxors", Journal of Alloys and Compounds, Vol. 875, pp. 159999, 2021., doi:10.1016/j.jallcom.2021.159999
  • [5] Borunda, M., Jaramillo, O.A., Dorantes, R., Reyes, A., "Organic Rankine Cycle coupling with a Parabolic Trough Solar Power Plant for cogeneration and industrial processes", Renewable Energy, Vol. 86, pp. 651-663, 2016., doi:10.1016/j.renene.2015.08.041
  • [6] Sallaberry, F., Pujol-Nadal, R., Garcia de Jalón, A., Martínez-Moll, V., "Towards a Standard Testing Methodology for Medium-temperature Solar Collectors with Variable Geometry", Energy Procedia, Vol. 57, pp. 2904-2913, 2014., doi:10.1016/j.egypro.2014.10.325
  • [7] Kumar, C.N., Murugesan, P., "Review on twisted tapes heat transfer enhancement", International Journal of Scientific and Engineerin`g Research, Vol. 3, pp. 1-9, 2012., doi:10.1016/j.rser.2016.04.051
  • [8] Abed, A.M., Alghoul, M.A., Sopian, K., Mohammed, H.A., Majdi, H.SH., Al-Shamani, A.N., "Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids", Chemical Engineering and Processing: Process Intensification, Vol. 87, pp. 88-103, 2015., doi:10.1016/j.cep.2014.11.005
  • [9] Ajeel, R.K., Salim, V.S.L., Sopian, K., Yusoff, M.Z.,Hasnan, KH., Ibrahim, A., Al-Waeli, A., "Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: An experimental and numerical study", International Journal of Heat and Mass Transfer, Vol. 145, pp. 118806, 2019., doi:10.1016/j.ijheatmasstransfer.2019.118806
  • [10] Bisht, V.S., Patil, A.K., Gupta, A., "Review and performance evaluation of roughened solar air heaters", Renewable and Sustainable Energy Reviews, Vol. 81,pp. 954-97, 2018., doi:10.1016/j.rser.2017.08.036
  • [11] Kumar, A., Kim, M.-H., "Convective heat transfer enhancement in solar air channels", Applied Thermal Engineering, 89, pp. 239-261, 2015., doi:10.1016/j.applthermaleng.2015.06.015
  • [12] Kareem, Z.S., Mohd Jaafar, M.N., Lazim, T.M., Abdullah, SH., Abdulwahid, A.F., "Passive heat transfer enhancement review in corrugation", Experimental Thermal and Fluid Science, Vol. 68: pp. 22-38, 2015, doi:10.1016/j.expthermflusci.2015.04.012.
  • [13] Navickaitė, K., Cattani, L., Bahl, C.R.H., Engelbrecht, K., "Elliptical double corrugated tubes for enhanced heat transfer", International Journal of Heat and Mass Transfer, Vol. 128, pp. 363-377, 2019., doi:10.1016/j.ijheatmasstransfer.2018.09.003
  • [14] Hussein, A.M., Sharma, K.V., Bakar, R.A., Kadirgama, K., A., "Review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid", Renewable and Sustainable Energy Reviews, Vol. 29, pp. 734-743, 2014., doi:10.1016/j.rser.2013.08.014
  • [15] Khoshvaght-Aliabadi, M., Eskandari, M., "Influence of twist length variations on thermal–hydraulic specifications of twisted-tape inserts in presence of Cu–water nanofluid", Experimental Thermal and Fluid Science, Vol. 61, pp. 230-240, 2015., doi:10.1016/j.expthermflusci.2014.11.004
  • [16] Pang, C., Lee, J.W., Kang, Y.T., "Review on combined heat and mass transfer characteristics in nanofluids", International Journal of Thermal Sciences, Vol. 87, pp. 49-67, 2015., doi:10.1016/j.ijthermalsci.2014.07.017
  • [17] Gao, T., Zhang, X., Li, CH., Zhang, Y., Yang, M., Jia, D., Ji, H., Zhao, Y., Li, R., Yao, P., Zhu, L., "Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding", Journal of manufacturing processes, Vol. 51, pp. 44-61, 2020., doi:10.1016/j.jmapro.2020.01.024
  • [18] Jaisankar, S., Radhakrishnan, T.,Sheeba, K., "Experimental studies on heat transfer and friction factor characteristics of forced circulation solar water heater system fitted with helical twisted tapes", Solar Energy, Vol. 83, pp. 1943-1952, 2009., doi:10.1016/j.solener.2009.07.006
  • [19] Sui, M., Li, C., Wu, W., Yang, M., Muhammad Ali, H., Zhang, Y., Jia, D., Hou, Y., "Temperature of grinding carbide with castor oil-based MoS2 nanofluid minimum quantity lubrication", Journal of Thermal Science and Engineering Applications, Vol. 13,pp.14-25, 2021., doi:10.1115/1.4049982
  • [20] Bellos, E.,Tzivanidis, C., "Enhancing the performance of evacuated and non-evacuated parabolic trough collectors using twisted tape inserts, perforated plate inserts and internally finned absorber", Energies, Vol. 11, pp. 1129. 2018., doi:10.3390/en11051129
  • [21] Jafar, K.S.,Sivaraman, B., "Performance characteristics of parabolic solar collector water heater system fitted with nail twisted tapes absorber", J. Eng. Sci. Technol, Vol. 12, pp. 608-621. 2017., doi:10.1016/j.rser.2018.04.093
  • [22] Nakhchi, M., Rahmati, M., "Entropy generation of turbulent Cu–water nanofluid flows inside thermal systems equipped with transverse-cut twisted turbulators", Journal of Thermal Analysis and Calorimetry, Vol. 143, pp. 2475-2484, 2021., doi:10.1007/s10973-020-09960-w
  • [23] ErfanianNakhchi, M. Rahmati, M., "Turbulent flows inside pipes equipped with novel perforated V-shaped rectangular winglet turbulators: numerical simulations", Journal of Energy Resources Technology, Vol. 142, pp. 123-135, 2020., doi:10.1115/1.4047319
  • [24] Jaramillo, O.A., Borunda, M., Velazquez-Lucho, K.M., Robles, M., "Parabolic trough solar collector for low enthalpy processes: An analysis of the efficiency enhancement by using twisted tape inserts", Renewable energy, Vol. 93, pp. 125-141, 2016., doi:10.1016/j.renene.2016.02.046
  • [25] Wang, M., Yang, L., Hu, B., Liu, J., He, L., Jia, Q., Song, Y., Zhang, Z., "Bimetallic NiFe oxide structures derived from hollow NiFe Prussian blue nanobox for label-free electrochemical biosensing adenosine triphosphate", Biosensors and Bioelectronics, Vol. 113, pp. 16-24, 2018., doi:10.1016/j.bios.2018.04.050
  • [26] Smithberg, E., Landis, F., "Friction and forced convection heat-transfer characteristics in tubes with twisted tape swirl generators", Vol. 86, pp. 39-48, 1964., doi:10.1115/1.3687061
  • [27] Hong, S.,Bergles, A., "Augmentation of laminar flow heat transfer in tubes by means of twisted-tape inserts", Vol. 98, pp. 251-256, 1976., doi:10.1115/1.3450527
  • [28] Manglik, R.M., Bergles, A.E., "Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: Part II—Transition and turbulent flows", Vol. 115, pp. 890-896, 1993., doi:10.1115/1.2911384
  • [29] Klepper, O., "HEAT TRANSFER PERFORMANCE OF SHORT TWISTED TAPES", Oak Ridge National Lab., Tenn, 1972., doi:10.2172/4645882
  • [30] Dasmahapatra, J. M., Rao, R., "Laminar flow heat transfer to generalized power law fluids inside circular tubes fitted with regularly spaced twisted tape elements for uniform wall temperature condition", Heat Transfer Division HTD,. Vol. 174,pp. 51-58, 1991., doi:10.1016/j.renene.2016.02.046
  • [31] Date, A., Gaitonde, U., "Development of correlations for predicting characteristics of laminar flow in a tube fitted with regularly spaced twisted-tape elements", Experimental Thermal and Fluid Science, Vol. 3,pp. 373-382, 1990., doi:10.1016/0894-1777(90)90035-6
  • [32] Date, A.,Singham, J., "Numerical prediction of friction and heat transfer characteristics of fully developed laminar flow in tube containing twisted tapes tapes in Mechanical Engineering", ASME-AMER SOC MECHANICAL ENG 345 E 47TH ST, Newyork, NY 10017.1972., doi:10.1016/0142-727X(90)90058-J
  • [33] Date, A.W., "Prediction of fully-developed flow in a tube containing a twisted-tape", International journal of heat and mass transfer, Vol. 17,pp. 845-859, 1974., doi:10.1016/0017-9310(74)90152-5
  • [34] Eiamsa-Ard, S., Promvonge, P., "Thermal characteristics in round tube fitted with serrated twisted tape", Applied Thermal Engineering, Vol. 30, pp. 1673-1682, 2010., doi:10.1016/j.applthermaleng.2010.03.026
  • [35] Piriyarungrod, N., Kumar,M., Thianpong, C., Pimsarn, M., Chuwattanakul, V., Eiamsa-ard, S., "Intensification of thermo-hydraulic performance in heat exchanger tube inserted with multiple twisted-tapes", Applied Thermal Engineering, 136: p. 516-530, 2018., doi:10.1016/j.applthermaleng.2018.02.097
  • [36] Abed, A.M., Majdi, H. SH., Hussein, Z., Fadhil, D., Abdulkadhim, A., "Numerical analysis of flow and heat transfer enhancement in a horizontal pipe with P-TT and V-Cut twisted tape", Case studies in thermal engineering, Vol. 12, pp. 749-758, 2018., doi:10.1016/j.csite.2018.10.004
  • [37] Saravanan, A., Senthilkumaar, J., Jaisankar, S., "Performance assessment in V-trough solar water heater fitted with square and V-cut twisted tape inserts", Applied Thermal Engineering, Vol. 102, pp. 476-486, 2016., doi:10.1016/j.applthermaleng.2016.03.088
  • [38] Zhang, S., Lu, L., Dong, CH., Hyun Cha, S., "Performance evaluation of a double-pipe heat exchanger fitted with self-rotating twisted tapes", Applied Thermal Engineering, Vol. 158,pp. 113770, 2019., doi:10.1016/j.applthermaleng.2019.113770
  • [39] Peyghambarzadeh, S., Hashemabadi, S.H., Hoseini, S.M., SeifiJamnani, M., "Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators", International communications in heat and mass transfer, Vol. 38, pp. 1283-1290, 2011., doi:10.1016/j.icheatmasstransfer.2011.07.001
  • [40] Rebsdat, S., Mayer, D., "Ethylene glycol. Ullmann’s Encyclopedia of Industrial Chemistry", Vol. 495, pp. 1453-1495, 2000, doi:10.1002/14356007.a10_101
  • [41] Olia, H., Torabi, M., Bahiraei, M., Ahmadi, M.H., Goodarzi, M., Safaei, M.R., "Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: state-of-the-art", Applied Sciences, Vol. 9, pp. 463. 2019., doi:10.3390/app9030463
  • [42] Korres, D., Bellos, E., Tzivanidis, C., "Investigation of a nanofluid-based compound parabolic trough solar collector under laminar flow conditions", Applied Thermal Engineering, Vol. 149, pp. 366-376, 2019., doi:10.1016/j.applthermaleng.2018.12.077
  • [43] Li, Z., Sheikholeslami, M., Jafaryar, M., Shafee, A.,Chamkha, A.J., "Investigation of nanofluid entropy generation in a heat exchanger with helical twisted tapes", Journal of Molecular Liquids, Vol. 266,pp. 797-805, 2018., doi:10.1016/j.molliq.2018.07.009
  • [44] Gnanavel, C., Saravanan, R., Chandrasekaran, M., "Heat transfer enhancement through nano-fluids and twisted tape insert with rectangular cut on its rib in a double pipe heat exchanger" Materials Today, Proceedings, Vol. 21, pp. 865-869, 2020., doi:10.1016/j.matpr.2019.07.606
  • [45] Faris Abdullah, M., Zulkifli, R., Harun, Z., Abdullah, SH., Wan Ghopa, W.A., Soheil Najm, A., Sulaiman, N.H., "Impact of the TiO2 nanosolution concentration on heat transfer enhancement of the twin impingement jet of a heated aluminum plate", Micromachines, Vol. 10,pp. 176-210, 2019., doi:10.3390/mi10030176
  • [46] Akyürek, E.F., Geliş, K., Şahin, B., Manay, E., "Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger", Results in Physics, Vol. 9,pp. 376-389, 2018., doi:10.1016/j.rinp.2018.02.067
  • [47] Arani, A.A.A., Sadripour, S., Kermani, S., "Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluids in a sinusoidal–wavy mini-channel with phase shift and variable wavelength", International Journal of Mechanical Sciences, Vol. 128, pp. 550-563, 2017., doi:10.1016/j.ijmecsci.2017.05.030
  • [48] Dezfulizadeh, A., Aghaei, A., HassaniJoshaghani, A., Najafizadeh, M.M., "An experimental study on dynamic viscosity and thermal conductivity of water-Cu-SiO2-MWCNT ternary hybrid nanofluid and the development of practical correlations", Powder Technology, Vol. 389, pp. 215-234, 2021., doi:10.1016/j.powtec.2021.05.029
  • [49] Soltani, O., Akbari, M., "Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: experimental study", Physica E: Low-dimensional Systems and Nanostructures, Vol. 84,pp. 564-570, 2016., doi:10.1016/j.physe.2016.06.015
  • [50] Ahmad, S., Ashraf, M., Ali, K., "Numerical simulation of viscous dissipation in a micropolar fluid flow through a porous medium", Journal of Applied Mechanics and Technical Physics, Vol. 60, pp. 996-1004, 2019., doi:10.1134/S0021894419060038
  • [51] Ahmad, S., Ashraf M., Ali, K., "Nanofluid flow comprising gyrotactic microorganisms through a porous medium. Journal of Applied Fluid Mechanics", Vol. 13, pp. 1539-1549, 2020., doi: 10.36884/jafm.13.05.31030
  • [52] Ahmad, S., Ashraf, M., Ali, K., "Bioconvection due to gyrotactic microbes in a nanofluid flow through a porous medium. Heliyon", Vol. 6, pp. 105832, 2020., doi:10.1016/j.heliyon.2020.e05832
  • [53] Ahmad, S., Ashraf, M., Ali, K., "Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls", Journal of Thermal Analysis and Calorimetry, Vol. 144, pp. 941-953, 2021., doi:10.1007/s10973-020-09542-w
  • [54] Duangthongsuk, W.,Wongwises, S., "An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime", International Journal of Heat and Mass Transfer,Vol. 53, pp. 334-344, 2010., doi:10.1016/j.ijheatmasstransfer.2009.09.024
  • [55] Dezfulizadeh, A., Aghaei, A., HassaniJoshaghani, A., Najafizadeh, M.M.,"Exergy efficiency of a novel heat exchanger under MHD effects filled with water-based Cu–SiO2-MWCNT ternary hybrid nanofluid based on empirical data. Journal of Thermal Analysis and Calorimetry", Vol. 147, pp. 4781-4804, 2022., doi:10.1007/s10973-021-10867-3
  • [56] Roohbakhsh Meyary Dovom, A., Aghaei, A., Hassani Joshaghani, A., Dezfulizadeh, A., Azadi kakavandi, A., "Numerical analysis of heating aerosol carbon nanofluid flow in a power plant recupesrator with considering ash fouling: a deep learning approach", Engineering Analysis with Boundary Elements, Vol. 141, pp. 75-90, 2022., doi:10.1016/j.enganabound.2022.05.001
  • [57] Aghaei, A., Enayati, M., Beigi, N., Ahmadi, A., Pourmohamadian, H., Sadeghi, SH., Dezfulizadeh, A., Golzar, A.,"Comparison of the effect of using helical strips and fines on the efficiency and thermal–hydraulic performance of parabolic solar collectors", Sustainable Energy Technologies and Assessments, Vol. 52,pp. 102254, 2022., doi:10.1016/j.seta.2022.102254
  • [58] Rostami, S., Sepehrirad, M., Dezfulizadeh, A., Kadhim Hussein, A., ShahsavarGoldanlou, A., SafdariShadloo, M.,"Exergy optimization of a solar collector in flat plate shape equipped with elliptical pipes filled with turbulent nanofluid flow: a study for thermal management", Water,Vol. 12, pp. 2294, 2020., doi:10.3390/w12082294
  • [59] Versteeg, H.K., Malalasekera, W., "An introduction to computational fluid dynamics: the finite volume method", Pearson education, 2007.
  • [60] Shakiba, A., Vahedi, K., "Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger", Journal of Magnetism and Magnetic Materials, Vol. 402,pp. 131-142, 2016., doi:10.1016/j.jmmm.2015.11.039
  • [61] Nazir, M.S., Ghasemi, A., Dezfulizadeh, A., Abdalla, A.N., "Numerical simulation of the performance of a novel parabolic solar receiver filled with nanofluid", Journal of Thermal Analysis and Calorimetry, Vol. 144, pp. 2653-2664. 2021., doi:10.1007/s10973-021-10613-9
  • [62] ShahsavarGoldanlou, Sepehrirad, M., Dezfulizadeh, A., Golzar, A., Badri, M., Rostami, S., "Effects of using ferromagnetic hybrid nanofluid in an evacuated sweep-shape solar receiver", Journal of Thermal Analysis and Calorimetry, Vol. 143,pp. 1623-1636, 2021., doi:10.1007/s10973-020-09903-5
  • [63] Hasanpour, A., Farhad,i M., Sedighi, K., "Intensification of heat exchangers performance by modified and optimized twisted tapes", Chemical Engineering and Processing-Process Intensification, Vol. 120, pp. 276-285, 2017., doi:10.1016/j.cep.2017.07.026
  • [64] Rashidi, S., Akbarzadeh, A., Karimi, N., Masoodi, R., "Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct–a numerical study", Applied Thermal Engineering, Vol. 130, pp. 135-148. 2018., doi:10.1016/j.applthermaleng.2017.11.048
  • [65] Menter, F., Esch, T., Kubacki, S., "Transition modelling based on local variables, Engineering Turbulence Modelling and Experiments", Vol. 5, pp. 555-564. 2002., doi:10.1016/B978-008044114-6/50053-3
  • [66] Incropera, F., "Fundamentals of Heat and Mass Transfer 6th Edition", Fundamentals of Heat and Mass Transfer. 2007.
  • [67] Petela, R., "Exergy of undiluted thermal radiation", Solar energy,Vol. 74, pp. 469-488, 2003., doi:10.1016/S0038-092X(03)00226-3
  • [68] Candau, Y., "On the exergy of radiation", Solar Energy, Vol. 75,pp. 241-247, 2003., doi:10.1016/j.solener.2003.07.012
  • [69] Kasaiean, A., Sameti, M., Daneshazarian, R., Noori, Z., Adamian, A., Ming, T., "Heat transfer network for a parabolic trough collector as a heat collecting element using nanofluid", Renewable energy, Vol. 123,pp. 439-449, 2018., doi:10.1016/j.renene.2018.02.062
  • [70] Zare, V., Moalemian, A., "Parabolic trough solar collectors integrated with a Kalina cycle for high temperature applications: Energy, exergy and economic analyses", Energy Conversion and Management, Vol. 151: pp. 681-692, 2017., doi:10.1016/j.enconman.2017.09.028
  • [71] Malekan, M., Khosravi, A., Syri, S., "Heat transfer modeling of a parabolic trough solar collector with working fluid of Fe3O4 and CuO/Therminol 66 nanofluids under magnetic field", Applied Thermal Engineering, Vol. 163,pp. 114435, 2019., doi:10.1016/j.applthermaleng.2019.114435
  • [72] Bellos, E., Tzivanidis, C., Daniil, I., "Thermal and exergetic evaluation of parabolic trough collectors with finned absorbers operating with air", Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 231, pp. 631-644, 2017., doi:10.1177/0957650917712403
  • [73] Faizal, M., Saidur, R., Mekhilef, S., Alim, M.A., "Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector", Energy Conversion and Management, Vol. 76,pp. 162-168, 2013., doi:10.1016/j.enconman.2013.07.038
  • [74] Faizal, M., Saidur, R., Mekhilef, S., Hepbasli, A., Mahbubul, I.M., "Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid", Clean Technologies and Environmental Policy,Vol. 17, pp. 1457-1473,2015., doi:10.1007/s10098-014-0870-0
  • [75] Michael Joseph Stalin, P., Arjunan, T.V., Matheswaran, M.M., Dolli, H., Sadanandam, N., "Energy, economic and environmental investigation of a flat plate solar collector with CeO2/water nanofluid", Journal of Thermal Analysis and Calorimetry, Vol. 139, pp. 3219-3233.2020., doi:10.1007/s10973-019-08670-2
  • [76] Moosavian, S.F., Borzuei,D., Ahmadi,A., "Energy, exergy, environmental and economic analysis of the parabolic solar collector with life cycle assessment for different climate conditions", Renewable Energy, Vol. 165,pp. 301-320, 2021., doi:10.1016/j.renene.2020.11.036
  • [77] Mashhadian, A., Heyhat,M.M., Mahian,O., "Improving environmental performance of a direct absorption parabolic trough collector by using hybrid nanofluids", Energy Conversion and Management, Vol. 244, pp. 114450.2021., doi:10.1016/j.enconman.2021.114450
  • [78] Lei, D., Fu, X., Ren, Y., Yao, F., Wang, Z., "Temperature and thermal stress analysis of parabolic trough receivers", Renewable Energy, Vol. 136, pp. 403-413,2019., doi:10.1016/j.renene.2019.01.021
  • [79] Baird, G., Alcorn,A., Haslam,P., "The energy embodied in building materials-updated New Zealand coefficients and their significance", Transactions of the Institution of Professional Engineers New Zealand: Civil Engineering Section, Vol. 24, pp. 46-54, 1997.
  • [80] Caliskan, H., "Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors", Renewable and Sustainable Energy Reviews, Vol. 69,pp. 488-492, 2017., doi:10.1016/j.rser.2016.11.203
  • [81] Dieckmann, S., Dersch, J., Giuliano, S., Puppe, M., Lüpfert, E., Hennecke, K., Pitz-Paal, R., Taylor, M., Ralon, P., "LCOE reduction potential of parabolic trough and solar tower CSP technology until 2025. in AIP Conference Proceedings", AIP Publishing LLC, Vol. 850, pp. 160-193, 2017., doi:10.1063/1.4984538
  • [82] Najafi, G., Ghobadian, B., Mamat, R.,Yusaf, T., Azmi, W.H., "Solar energy in Iran: Current state and outlook", Renewable and Sustainable Energy Reviews, Vol. 49,pp. 931-942,2015., doi:10.1016/j.rser.2015.04.056
  • [83] Aghaei, A., Dezfulizadeh A., Fadaeidehar, A., Sepehrirad, M., Mazaheri, H., "Determination of Energy Efficiency and Exergy of Solar Collector Bed, Operating Plate under Turbulent Nanoscale Flow with Molybdenum Disulfide Nanoparticles in Different Morphologies for Tropical Regions of Iran", Energy Engineering & Management, Vol. 12, pp. 130-143, 2022., (In Persion) doi: 10.22052/12.1.130