استراتژی مدیریت انرژی جدید مبتنی بر منطق فازی نوع دو برای بهبود ماندگاری سلول سوختی و مصرف سوخت خودروهای الکتریکی هیبریدی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی برق و کامپیوتر، دانشگاه بین‌المللی امام خمینی، قزوین، ایران

چکیده

این مقاله یک استراتژی مدیریت انرژی جدید ‌(EM S) برای خودروهای الکتریکی هیبریدی با منابع انرژی سلول سوختی/باتری/ابرخازن (FCHEV) ارائه می‌کند. برای بهبود ماندگاری و مصرف سوخت سیستم سلول سوختی در FCHEV، سیستم مدیریت انرژی پیشنهادی از یک استراتژی کنترلی حلقه بسته استفاده کرده است که ترکیبی از کنترل‌کنندۀ منطق فازی (FLC) و یک مدل مبتنی بر جداسازی فرکانس مبتنی بر فیلتر پایین‌گذر تطبیقی و روش‌های تبدیل موجک است. عدم قطعیت به‌عنوان یک ابزار قدرتمند برای طراحی استراتژی‌های انعطاف‌پذیر با استفاده از کنترل‌کنندۀ منطق فازی نوع دو بر اساس سطح شارژ سیستم‌های ذخیره‌‌کنندۀ توان مورد استفاده قرارمی‌گیرد. علاوه بر این، سیستم کنترل مبتنی بر جداسازی فرکانس طراحی‌شده، توان مورد نیاز را برای تأمین توسط سیستم‌های سلول سوختی، باتری و ابرخازن با توجه به ویژگی‌های فردی آن‌ها و محدودیت نوسانات توان در سیستم سلول سوختی به سه بخش فرکانسی بهینه جدا می‌کند. در نهایت، یک تست عملکرد پویا از شبیه‌ساز ADVISOR تحت چرخۀ تست خودروی سبک جهانی (WLTC) برای مقایسۀ استراتژی پیشنهادی با استراتژی‌های مختلف استفاده شده است. با توجه به نتایج شبیه‌سازی، استراتژی پیشنهادی، ایمنی ابر‌خازن و باتری را تضمین کرده و درحالی‌که حداکثر مصرف هیدروژن را تا 6/14 درصد نسبت به استراتژی‌های مختلف در شرایط رانندگی مشابه کاهش می‌دهد، دوام و ماندگاری سلول سوختی را نیز بهبود می‌بخشد.

کلیدواژه‌ها


  • [1] Sun, Z., Wang, Y., Chen, Z. and Li, X., "Min-max game-based energy management strategy for fuel cell/supercapacitor hybrid electric vehicles", Applied energy, Vol. 267, pp. 115086, 2020, doi:10.1016/j.apenergy.2020.115086.
  • [2] Kang, J., Guo, Y. and Liu, J., "Rule-based energy management strategies for a fuel cell-battery hybrid locomotive", In 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), pp. 45-50, 2020, doi:10.1109/EI250167.2020.9346652.
  • [3] Bianchi, D., Rolando, L., Serrao, L., Onori, S., Rizzoni, G., Al-Khayat, and et al., " A rule-based strategy for a series/parallel hybrid electric vehicle: an approach based on dynamic programming", In Dynamic Systems and Control Conference, Vol. 44175, pp. 507-514, 2010, doi:10.1115/DSCC2010-4233
  • [4] Chen, S.Y., Wu, C.H., Hung, Y.H. and Chung, C.T., "Optimal strategies of energy management integrated with transmission control for a hybrid electric vehicle using dynamic particle swarm optimization", Energy, Vol. 160, pp. 154-170, 201, doi:10.1016/j.energy.2018. 06.023.
  • [5] Fathy, A., Rezk, H. and Nassef, A.M., "Robust hydrogen-consumption-minimization strategy based salp swarm algorithm for energy management of fuel cell/supercapacitor/batteries in highly fluctuated load condition", Renewable energy, Vol. 139, pp. 147-160, 2019, doi:10.1016/j.renene.2019.02.076.
  • [6] Li, X., Wang, Y., Yang, D. and Chen, Z., "Adaptive energy management strategy for fuel cell/battery hybrid vehicles using Pontryagin's Minimal Principle", Journal of Power Sources, Vol. 440, pp. 227105, 2019, doi:10.1016/j.jpowsour.2019.227105.
  • [7] Huo, X., Ma, L., Zhao, X., Niu, B. and Zong, G., "Observer-based adaptive fuzzy tracking control of MIMO switched nonlinear systems preceded by unknown backlash-like hysteresis", Information Sciences, Vol. 490, pp.369-386, 2019, doi:10.1016/j.ins.2019.03. 082.
  • [8] Chen, J., Xu, C., Wu, C. and Xu, W., "Adaptive fuzzy logic control of fuel-cell-battery hybrid systems for electric vehicles", IEEE transactions on industrial informatics, Vol. 14, pp. 292-300, 2016, doi:10.1109/TII.2016.2618886.
  • [9] Hagras, H., "Type-2 FLCs: A new generation of fuzzy controllers", IEEE Computational Intelligence Magazine, Vol. 2, pp. 30-43, 2007, doi:10.1109/MCI.2007.357192.
  • [10] Jia, J. Cui, W. Qiao, and L. Qu, "A Real-time Operational Cost Minimization Strategy for Energy Management of Fuel Cell Electric Vehicles", 2021 IEEE Energy Conversion Congress and Exposition (ECCE), 2021, doi:10.1109/ECCE47101.2021.9595701.
  • [11] Li, B. Xu, J. Tian, and Z. Ma, "Energy Management Strategy for Fuel Cell and Battery Hybrid Vehicle Based on Fuzzy Logic", Processes, Vol. 8, No. 8, pp. 882, 2020, doi:10.3390/pr8080882.
  • [12] Liu, J. Liang, J. Song and J. Ye, "Research on Energy Management Strategy of Fuel Cell Vehicle Based on Multi-Dimensional Dynamic Programming", Automot. Eng, Vol. 41, pp.1347-1355, 2019, doi: 10.3390/ en15145190.
  • [13] Zhang, W. Chen, and Q. Li, "Modeling, optimization and control of a FC/battery hybrid locomotive based on ADVISOR", International Journal of Hydrogen Energy, Vol. 42, No. 29, pp. 18568–18583, 2017, doi:10.1016/j.ijhydene.2017.04.172.
  • [14] Lü et al., "Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm", Energy Conversion and Management, Vol. 205, pp. 112474, 2020, doi:10.1016/j.enconman.2020.112474.
  • [15] Wang, R. Liu, and A. Tang, "Energy management strategy of hybrid energy storage system for electric vehicles based on genetic algorithm optimization and temperature effect", Journal of Energy Storage, Vol. 51, pp. 104314, 2022, doi:10.1016/j.est .2022.104314.
  • [16] Min, Z. Song, H. Chen, T. Wang, and T. Zhang, “Genetic algorithm optimized neural network-based fuel cell hybrid electric vehicle energy management strategy under start-stop condition”, Applied Energy, Vol. 306, pp. 118036, 2022, doi:10.1016/j.apenergy .2021.118036.
  • [17] Bourdim, S., Azib, T., Hemsas, K.E. and Larouci, C., "Efficient energy management strategy for fuel cell ultracapacitor hybrid system", In 2016 Int. Conf. on Elec. Sys. for Air., Rail., Ship Prop. and Road Veh.& Int. Tran. Elec. Conf. (ESARS-ITEC), pp. 1-6, 2016, doi:10.1109/ESARS-ITEC.2016.7841325.
  • [18] Singh, K.V., Bansal, H.O. and Singh, D., "Fuzzy logic and Elman neural network tuned energy management strategies for a power-split HEVs", Energy, Vol. 225, pp. 120152, 2021, doi:10.1016/j.energy.2021. 120152.
  • [19] García, P., Fernández, L.M., Torreglosa, J.P. and Jurado, F., "Operation mode control of a hybrid power system based on fuel cell/battery/ultracapacitor for an electric tramway", Computers & Electrical Engineering, Vol. 39, pp. 1993-2004, 2013, doi:10.1016/j. compeleceng.2013.04.022.
  • [20] Zhou, D., Al-Durra, A., Gao, F., Ravey, A., Matraji, I. and Simoes, M.G., "Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach", Journal of power sources, Vol.366, pp.278-291, 2017, doi:10.1016/j.jpowsour.2017.08. 107.
  • [21] Zhang, R., Tao, J. and Zhou, H., "Fuzzy optimal energy management for fuel cell and supercapacitor systems using neural network-based driving pattern recognition", IEEE Transactions on Fuzzy Systems, Vol. 27, pp. 45-57, 2018, doi:10.1109/TFUZZ.2018.2856086.
  • [22] Liang, Q., Karnik, N.N. and Mendel, J.M., "Connection admission control in ATM networks using survey-based type-2 fuzzy logic systems", IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), Vol. 30, pp. 329-339, 2000, https://doi.org /10.1109/5326.885114.
  • [23] Mattavelli, P., Rossetto, L., Spiazzi, G. and Tenti, P., "General-purpose fuzzy controller for DC-DC converters", IEEE transactions on Power Electronics, Vol. 12, pp. 79-86, 1997, doi:10.1109/63.554172.
  • [24] Wang, C., Xiong, R., He, H., Zhang, Y. and Shen, W., "Comparison of decomposition levels for wavelet transform based energy management in a plug-in hybrid electric vehicle", Journal of cleaner production, Vol. 210, pp. 1085-1097, 2019, doi:10.1016/j.jclepro .2018.11.082.
  • [25] Ibrahim, M., Jemei, S., Wimmer, G. and Hissel, D., "Nonlinear autoregressive neural network in an energy management strategy for battery/ultra-capacitor hybrid electrical vehicles", Electric Power Systems Research, Vol. 136, pp. 262-269, 2016, doi:10.1016/epsr.2016.03.005.
  • [26] Ibrahim, M., Jemei, S., Wimmer, G., Steiner, N.Y., Kokonendji, C.C. and Hissel, D., "Selection of mother wavelet and decomposition level for energy management in electrical vehicles including a fuel cell", International journal of hydrogen energy, Vol. 40, pp. 15823-15833, 2015, doi:10.1016/j.ijhydene.2015.06.055.
  • [27] US EPA, OAR, "Dynamometer Drive Schedules | US EPA", US EPA, Sep. 16, 2015, https://www.epa.gov/vehicle-and-fuel-emissionstesting /dynamometer-drive-schedules.
  • [28] Fu, Z. Li, P. Si, and F. Tao, "A hierarchical energy management strategy for fuel cell/battery/supercapacitor hybrid electric vehicles", International Journal of Hydrogen Energy, Vol. 44, No. 39, pp. 22146–22159,2019, doi:10.1016/j.ijhydene.2019.06. 158.
  • [29] Zhang, Q. and Li, G., "A predictive energy management system for hybrid energy storage systems in electric vehicles", Electrical Engineering, Vol. 101, pp. 759-770, 2019, doi:10.1007/s00202-019-00822-9.
  • [30] Hemi, H., Ghouili, J. and Cheriti, A., "A real time fuzzy logic power management strategy for a fuel cell vehicle", Energy conversion and Management, Vol. 80, pp. 63-70, 2014, doi:10.1016/j.enconman.2013.12.040.
  • [31] Fu, Z., Zhu, L., Tao, F., Si, P. and Sun, L., "Optimization based energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle considering fuel economy and fuel cell lifespan", International Journal of Hydrogen Energy, Vol. 45, pp. 8875-8886, 2020, doi:10.1016/j.ijhydene.2020.01.017.
  • [32] Adv-vehicle-sim.sourceforge.net. (n.d.). "ADVISOR Documentation", 2023, Available at: https://adv-vehicle-sim.sourceforge.net.