[1] Liu, X., Chen, Z., Zhang, C., and Wu, J., "A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation", Applied Energy, Vol. 123, pp. 263-272, 2014.
[2] Omar, N., Monem, M.A., Firouz, Y., Salminen, J., Smekens, J., Hegazy, O., Gaulous, H., Mulder, G., Van den Bossche, P., and Coosemans, T., "Lithium iron phosphate based battery–Assessment of the aging parameters and development of cycle life model", Applied Energy, Vol. 113, pp. 1575-1585, 2014.
[3] Manzetti, S., and Mariasiu, F., "Electric vehicle battery technologies: From present state to future systems", Renewable and Sustainable Energy Reviews, Vol. 51, pp. 1004-1012, 2015.
[4] Zhang, Y., Wang, C.-Y., and Tang, X., "Cycling degradation of an automotive LiFePO4 lithium-ion battery", Journal of power sources, Vol. 196, pp. 1513-1520, 2011.
[5] Shah, K. , Chalise, D., and Jain, A., "Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells", Journal of power sources, Vol. 330, pp. 167-174, 2016.
[6] Wilke, S., Schweitzer, B., Khatee, b S., and Al-Hallaj, S., "Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material": an experimental study, Journal of Power Sources, Vol. 340, pp. 51-59, 2017.
[7] Wang, H., Lara-Curzio, E., Rule, E.T., and Winchester, C.S., "Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries", Journal of Power Sources, Vol. 342, pp. 913-920, 2017.
[8] Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., and Chen, C., "Thermal runaway caused fire and explosion of lithium ion battery", Journal of power sources, Vol. 208, pp. 210-224, 2012.
[9] Nikowitz, M. "Advanced hybrid and electric vehicles, System Optimization and Vehicle Integration", Springer, 2016.
[10] Pesaran A.A., "Battery thermal models for hybrid vehicle simulations", Journal of power sources, Vol. 110, pp. 377-382, 2002.
[11] Wang, Q., Jiang, B., Li, B., and Yan, Y., "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles", Renewable and Sustainable Energy Reviews, Vol. 64, pp. 106-128, 2016.
[12] Klein M., Tong S., and Park J., "In-plane nonuniform temperature effects on the performance of a large-format lithium-ion pouch cell", Applied Energy, Vol. 165, pp. 639-647, 2016.
[13] Liu, H., Wei, Z., He, W., and Zhao, J., "Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review", Energy conversion and management, Vol. 150, pp. 304-330, 2017.
[14] Lu, L., Han, X., Li, J., Hua, J., and Ouyang M., "A review on the key issues for lithium-ion battery management in electric vehicles", Journal of power sources, Vol. 226, pp. 272-288, 2013.
[15] Wang, T., Tseng, K., and Zhao, J., "Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model", Applied Thermal Engineering, Vol. 90, pp. 521-529, 2015.
[16] Chen, K., Wu, W., Yuan, F., Chen, L., and Wang, S., "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern", Energy, Vol. 167, pp. 781-790, 2019.
[17] Zhang, T., Gao, Q., Wang, G., Gu, Y., Wang, Y., Bao, W., and Zhang, D., "Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in
cooling process", Applied Thermal Engineering, Vol. 116, pp. 655-662, 2017.
[18] Tousi, M., Sarchami, A., Kiani, M., Najafi, M., and Houshfar, E., "Numerical study of novel liquid-cooled thermal management system for cylindrical Li-ion battery packs under high discharge rate based on AgO nanofluid and copper sheath", Journal of Energy Storage, Vol. 41, pp. 102910, 2021.
[19] Behi, H., Karimi, D., Behi, M., Ghanbarpour, M., Jaguemont, J., Sokkeh, M.A., Gandoman, F.H., Berecibar, M., and Van Mierlo, J., "A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles", Applied Thermal Engineering, Vol. 174, pp. 115280, 2020.
[20] Li, Y., Guo, H., Qi, F., Guo, Z., Li, M., and Tjernberg, L.B., "Investigation on liquid cold plate thermal management system with heat pipes for LiFePO4 battery pack in electric vehicles", Applied Thermal Engineering, Vol. 185, pp. 116382, 2021.
[21] Mashayekhi, M., Houshfar, E., and Ashjaee, M., "Development of hybrid cooling method with PCM and Al2O3 nanofluid in aluminium minichannels using heat source model of Li-ion batteries", Applied Thermal Engineering, Vol. 178, pp. 115543, 2020.
[22] El Idi, M.M., Karkri, M., and Tankari, M.A., "A passive thermal management system of Li-ion batteries using PCM composites: Experimental and numerical investigations", International Journal of Heat and Mass Transfer, Vol. 169, pp. 120894, 2021.
[23] Rao Z., and Wang S., "A review of power battery thermal energy management", Renewable and Sustainable Energy Reviews, Vol. 15, No. 9, pp. 4554-4571, 2011.
[24] Bibin C., Vijayaram M., Suriya V., Ganesh R.S., and Soundarraj S., "A review on thermal issues in Li-ion battery and recent advancements in battery thermal management system", Materials Today: Proceedings, Vol.33, pp. 116-128, 2020.
[25] Chen, D., Jiang, J., Kim, G.-H., Yang, C., and Pesaran, A., "Comparison of different cooling methods for lithium ion battery cells", Applied Thermal Engineering, Vol. 94, pp. 846-854, 2016.
[26] Zhang, T., Gao, C., Gao, Q., Wang, G., Liu, M., Guo, Y., Xiao, C., and Yan, Y., "Status and development of electric vehicle integrated thermal management from BTM to HVAC", Applied Thermal Engineering, Vol. 88, pp. 398-409, 2015.
[27] Tuckerman, D.B., and Pease, R.F.W., "High-performance heat sinking for VLSI, IEEE Electron device letters", Vol. 2, pp. 126-129, 1981.
[28] Huo, Y., Rao, Z., Liu, X., and Zhao, J.,"Investigation of power battery thermal management by using mini-channel cold plate", Energy Conversion and Management, Vol. 89, pp. 387-395, 2015.
[29] Deng, T., Zhang, G., and Ran, Y., "Study on thermal management of rectangular Li-ion battery with serpentine-channel cold plate", International Journal of Heat and Mass Transfer, Vol. 125, pp. 143-152, 2018.
[30] Sui, Y., Teo, C., Lee, P.S., Chew, Y., and Shu, C., "Fluid flow and heat transfer in wavy microchannels", International Journal of Heat and Mass Transfer, Vol. 53, pp. 2760-2772, 2010.
[31] Ghule, K., and Soni, M., "Numerical heat transfer analysis of wavy micro channels with different cross sections", Energy Procedia, Vol. 109, pp. 471-478, 2017.
[32] Rostami, J., Abbassi, A., and Saffar-Avval, M., "Optimization of conjugate heat transfer in wavy walls microchannels", Applied Thermal Engineering, Vol. 82, pp. 318-328, 2015.
[33] Zhao, J., Rao, Z., and Li, Y., "Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery", Energy conversion and management, Vol. 103, pp. 157-165, 2015.
[34] Basu, S., Hariharan, K.S., Kolake, S.M., Song, T., Sohn, D.K., and Yeo, T., "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system", Applied Energy, Vol. 181, pp. 1-13, 2016.
[35] Boyd, B., and Hooman, K., "Air-cooled micro-porous heat exchangers for thermal management of fuel cells", International Communications in Heat and Mass Transfer, Vol. 39, No. 3, pp. 363-367, 2012.
[36] Kiani, M., Ansari, M., Arshadi, A.A., Houshfar, E., and Ashjaee, M., "Hybrid thermal management of lithium-ion batteries using nanofluid, metal foam, and phase change material: an integrated numerical–experimental approach", Journal of Thermal Analysis and Calorimetry, Vol. 181, pp. 1-13, 2020.
[37] Siddique, A.R.M., Mahmud, S., and Van Heyst, B., "A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations", Journal of Power Sources, Vol. 401, pp.224-237, 2018.
[38] Jiang, L., Zhang, H., Li, J., Xia, P., "Thermal performance of a cylindrical battery module impregnated with PCM composite based on thermoelectric cooling", Energy, Vol. 188, pp. 116048, 2019.
[39] Song, M., Hu, Y., Choe, S.-Y., and Garrick, T.R., "Analysis of the Heat Generation Rate of Lithium-Ion Battery Using an Electrochemical Thermal Model", Journal of The Electrochemical Society, Vol. 167, pp. 120503, 2020.
[40] Waldmann, T., Scurtu, R.-G., Richter, K., and Wohlfahrt-Mehrens, M., "18650 vs. 21700 Li-ion cells–A direct comparison of electrochemical, thermal, and geometrical properties", Journal of Power Sources, Vol. 472, pp. 228614, 2020.
[41] Srinivasan, V., Wang, C., "Analysis of electrochemical and thermal behavior of Li-ion cells", Journal of The Electrochemical Society, Vol. 150, A98, 2002.
[42] Chen, S., Wan, C., and Wang, Y., "Thermal analysis of lithium-ion batteries", Journal of power sources, Vol. 140, pp. 111-124, 2005.
[43] Saw, L., Ye, Y., and Tay, A., "Electrochemical–thermal analysis of 18650 Lithium Iron Phosphate cell", Energy Conversion and Management, Vol. 75, pp. 162-174, 2013.
[44] Fan, L., Khodadadi, J., and Pesaran, A., "A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles", Journal of Power Sources, Vol. 238, pp. 301-312, 2013.
[45] Zhao, C., Cao, W., Dong, T., and Jiang, F., "Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow", International journal of heat and mass transfer, Vol. 120, pp. 751-762, 2018.
[46] Fang, W., Kwon, O.J., Wang, C.Y., "Electrochemical–thermal modeling of automotive Li-ion batteries and experimental validation using a three electrode cell", International journal of energy research, Vol. 34, pp. 107-115, 2010.
[47] Jeon, D.H., and Baek, S.M., "Thermal modeling of cylindrical lithium ion battery during discharge cycle", Energy Conversion and Management, Vol. 52, pp. 2973-2981, 2011.
[48] Chen, M., Sun, Q., Li, Y., Wu, K., Liu, B., Peng, P., and Wang, Q., "A thermal runaway simulation on a lithium titanate battery and the battery module", Energies, Vol. 8, pp. 490-500, 2015.
[49] Malley, R., Liu, L., and Depcik, C., "Comparative study of various cathodes for lithium ion batteries using an enhanced Peukert capacity model", Journal of Power Sources, Vol. 396, pp. 621-631, 2018.
[50] Kirsch, K.L., and Thole, K.A., "Pressure loss and heat transfer performance for additively and conventionally manufactured pin fin arrays", International Journal of Heat and Mass Transfer, Vol. 108, pp. 2502-2513, 2017.
[51] Moraveji, M.K., and Ardehali, R.M., "CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink", International Communications in Heat and Mass Transfer, Vol. 44, pp. 157-164, 2013.
[52] Gathers, G., "Thermophysical properties of liquid copper and aluminum", International journal of Thermophysics, Vol. 4, pp. 209-226, 1983.
[53] Shah, J., Ranjan, M., Sooraj, K., Sonvane, Y., and Gupta, S.K., "Surfactant prevented growth and enhanced thermophysical properties of CuO nanofluid", Journal of Molecular Liquids, Vol. 283, pp. 550-557, 2019.
[54] Cao, W., Zhao, C., Wang, Y., Dong, T., and Jiang, F., "Thermal modeling of full-size-scale cylindrical battery pack cooled by channeled liquid flow", International journal of heat and mass transfer, Vol. 138, pp. 1178-1187, 2019.
[55] Lee, K.-J., Smith, K., Pesaran, A., and Kim, G.-H., "Three dimensional thermal-, electrical-, and electrochemical-coupled model for cylindrical wound large format lithium-ion batteries", Journal of Power Sources, Vol. 241, pp. 20-32, 2013.
[56] Bernardi, D., Pawlikowski, E., and Newman, J., "A general energy balance for battery systems", Journal of the electrochemical society, Vol. 132, pp. 5-12, 1985.
[57] Akbari, O.A., Safaei, M.R., Goodarzi, M., Akbar, N.S., Zarringhalam, M., Shabani, G.A.S., and Dahari, M., "A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube", Advanced Powder Technology, Vol. 27, pp. 2175-2185, 2016.
[58] Neubauer, J., "Battery lifetime analysis and simulation tool (BLAST) documentation", National Renewable Energy Lab.(NREL), Golden, CO (United States), 2014.