گرما‌یش‌سنج بی‌سیم خودتوان با برداشتگر انرژی پیزوالکتریک برای سنجش انرژی گرمایشی در مجتمع‌های مسکونی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

این مقاله به ارائۀ ساختاری برای دستگاه گرمایش‌سنج بی‌سیم خودتوان می‌پردازد که تأمین توان آن از طریق برداشتگر انرژی سیال با یک تیر پیزوالکتریکی انجام می‌شود. کاربرد اصلی این دستگاه، تعیین منصفانه‌تر سهم انرژی گرمایشی مصرفی واحدهای مستقل در مجتمع‌های مسکونی بزرگ با سیستم گرمایش مرکزی است. در طرح ارائه‌شده، برداشتگر انرژی سیال پیزوالکتریک علاوه بر تأمین توان، نقش فلومتر نیز دارد که در نتیجه با کاهش توان مصرفی، امکان طراحی دستگاه به‌صورت خودتوان را فراهم می‌سازد. کارایی ساختار ارائه‌شده با استفاده از نمونۀ عملی دستگاه و تست آن در شرایط تغییر دبی از 100 تا  200 لیتر بر ساعت و مقایسه با نتایج اندازه‌گیری فلومتر اثر هال به‌عنوان حسگر مرجع، بررسی و درستی عملکرد همزمان تیر پیزوالکتریک به‌عنوان برداشتگر انرژی سیال و حسگر نشان داده شده است.
 

کلیدواژه‌ها


  • [1] Sun, B., Luh, P. B., Jia, Q., Jiang, Z., Wang, F., and Song, C., "Building energy management: integrated control of active and passive heating, cooling, lighting, shading, and ventilation systems", IEEE Transactions on Automation Science and Engineering, Vol. 10, No. 3, pp. 588-602, 2013.
  • [2] Manic, M., Wijayasekara, D., Amarasinghe, K., and Rodriguez-Andina, J., "Building energy management systems: the age of intelligent and adaptive buildings", IEEE Industrial Electronics Magazine, Vol. 10, No. 1, pp. 25-39, 2016.
  • [3] S. Department of Energy, Buildings energy data book, 2011.
  • [4] Sun, Q., Li, H., Ma, Z., Wang, C., Campillo, J., Zhang, Q., Wallin, F., Guo, J., "A comprehensive review of smart energy meters in intelligent energy networks", IEEE Internet of Things Journal, Vol. 3, No. 4, pp. 464-479, 2016.
  • [5] Skagestad, B. and Mildenstein, P. I, District heating and cooling connection handbook - programme of research, Development and Demonstration on District Heating and Cooling, 2002.
  • [6] Saavedra, E., Mascaraque, L., Calderon, G., Campo, G., and Santamaria, A., "The smart meter challenge: feasibility of autonomous indoor iot devices depending on its energy harvesting source and iot wireless technology", Sensors, Vol. 21, No. 22, 2021.
  • [7] Rokonuzzaman, M., Mishu, MK., Amin, N., Nadarajah, M., Roy, RB. Rahman, KS. Buhari, AM., Binzaid, S., Shakeri, M., and Pasupuleti, J., "Self-sustained autonomous wireless sensor network with integrated solar photovoltaic system for internet of smart home-building (IoSHB) applications", Micromachines, Vol. 12, No. 6, pp. 653, 2021.
  • [8] Hidalgo-Leon, R., Urquizo, J., Macias, J., Siguenza, D., Singh, p., wu, j., jinsong, and soriano, g., "energy harvesting technologies: analysis of their potential for supplying power to sensors in building", IEEE Third Ecuador Technical Chapters Meeting (ETCM), pp.1-6, 2018.
  • [9] Ma, X., Zhou,, "A review of flow-induced vibration energy harvesters", Energy Conversion and Management, Vol. 254, pp. 115223, 2022.
  • Hamlehdar, M., Kasaeian, A., and Safaei MR., "Energy harvesting from fluid flow using piezoelectrics: a critical review", Renewable Energy, 143, pp. 1826-1838, 2019.
  • Molino-Minero-Re, E., Carbonell-Ventura, M., Fisac-Fuentes, C., Manuel-Lazaro, A., and Toma, D., "Piezoelectric energy harvesting from induced vortex in water flow", IEEE International Instrumentation and Measurement Technology Conference Proceedings, pp. 624-627, 2012.
  • Hobeck, J., and Inman, D., "Electromechanical and statistical modeling of turbulence-induced vibration for energy harvesting", Proc. SPIE 8688, Active and Passive Smart Structures and Integrated Systems, 2013.
  • Gao, X., Shih, W., and Shih, W., "Flow energy harvesting using piezoelectric cantilevers with cylindrical extension", IEEE Transactions on Industrial Electronics, Vol. 60, No. 3, pp. 1116-1118, 2013.
  • Bischur, E., Pobering, S., Menacher, M., and Schwesinger, N., "Piezoelectric energy harvester operating in flowing water", Proc. SPIE 7643, Active and Passive Smart Structures and Integrated Systems, 2010.
  • Allen, J., and Smits, A., "Energy harvesting EEL", Journal of Fluids and Structures, Vol. 15, No. 3-4, pp. 629-640, 2001.
  • Bryant, M., Shafer, M., and Garcia, E., "Power and efficiency analysis of a flapping wing wind energy harvester", Active and Passive Smart Structures and Integrated Systems, Vol. 8341, pp. 83410E, 2012.
  • Skow, E., Cunefare, K., and Erturk, A., "Design and performance enhancement of hydraulic pressure energy harvesting systems", Proc. SPIE 8688, Active and Passive Smart Structures and Integrated Systems, 2013.
  • Hoffmann, D., Willmann, A., Göpfert, R., Becker, P., Folkmer, B., and Manoli, Y., "Energy harvesting from fluid flow in water pipelines for smart metering applications", Journal of Physics: Conference Series, Vol. 476, pp. 012104, 2013.
  • Roundy, S., Wright, P., and Rabaey, J., Energy scavenging for wireless sensor networks, Boston, MA: Springer US, 2004.
  • Ahmad, I., Hee, LM.,Abdelrhman, AM., Imam, SA., and Leong, MS., "Hybrid vibro-acoustic energy harvesting using electromagnetic transduction for autonomous condition monitoring system", Energy Conversion and Management. Vol. 258, pp. 115443, 2022.
  • Becker, P., Folkmer, B., Goepfert, R., Hoffmann, D., Willmann, A., and Manoli, Y., "Energy autonomous wireless water meter with integrated turbine driven energy harvester" Journal of Physics Conference Series, Vol. 476, pp. 2046, 2013.
  • Pimenta, N., and Chaves, P., "Study and design of a retrofitted smart water meter solution with energy harvesting integration", Discover Internet of Things, Vol. 1, 2021.
  • Li, XJ., and Chong, PHJ., "Design and implementation of a self-powered smart water meter", Sensors, 19, No.19, 2019.
  • Moczar, G., Csubak, T., and Varady, P., "Distributed measurement system for heat metering and control", IEEE Transactions on Instrumentation and Measurement, Vol. 51, No. 4, pp. 691-694, 2002.
  • Hehn, T., and Manoli, Y., CMOS circuits for piezoelectric energy harvesters, Springer Series in Advanced Microelectronics, 2015.
  • Knight, C., Davidson, J., and Behrens, S., "Energy options for wireless sensor nodes", Sensors, Vol. 8, No. 12, pp. 8037-8066, 2008.
  • Tabesh, A., and Fréchette, L., "An improved small-deflection electromechanical model for piezoelectric bending beam actuators and energy harvesters", Journal of Micromechanics and Microengineering, Vol. 18, No. 10, pp. 104009, 2008.
  • Rezaei, N., Tabesh, A., Dehghani, R., and Aghili, A., "An efficient piezoelectric windmill topology for energy harvesting from low speed air flows", IEEE Transactions on Industrial Electronics, Vol. 62, No. 6, pp. 3576-3583, 2014.
  • Piezo systems product catalog describing pzt piezoceramic materials, actuators, sensors, fans, energy harvesters, high voltage amplifiers, ultrasonic devices and piezoelectric engineering services, Piezo.com, 2018.
  • LTC1540 - Nanopower comparator with reference - linear technology, Linear.com, 2017.
  • ATmega328P-Microcontrollers and Processors, com, 2018.
  • I2C relative humidity sensor with temperature - HTU21D | TE connectivity, Te.com, 2018.
  • nRF24L01-Ultra low power wireless solutions from nordic semiconductor, Nordicsemi.com, 2018.
  • Hall-effect magnetic sensor-Low power consumption, Melexis.com, 2018.