افزایش بازدهی سلول خورشیدی CIGS با ترکیب مناسب لایه‎های بافر CdS و CdSe: شبیه‎سازی به‌وسیلۀ نرم‎افزار Silvaco

نویسندگان

1 پژوهشکده علوم و فناوری نانو، دانشگاه کاشان

2 دانشکده فیزیک، دانشگاه کاشان

3 دانشگاه کاشان

چکیده

یکی از لایه‏‏های اصلی در ساخت سلول‎های خورشیدی لایه‌نازک سلنید گالیوم ایندیوم مس (CIGS)، لایۀ بافر است. لایۀ بافر باعث افزایش مقدار جذب و کاهش بازترکیب‎های سطحی می‎شود. لذا سلول خورشیدی به‌میزان بیشتری حامل‏‏های بار تولیدشده را جذب می‌کند و موجب افزایش بازدهی در آن می‎‎شود. در این پژوهش با استفاده از نرم‎افزار شبیه‎ساز سیلواکو، لایه‎های کادمیوم سولفید (CdS) و کادمیوم سلنید (CdSe) به‌عنوان لایۀ بافر در ساختار مدل‎سازی شده و تأثیر ترکیب‎های مختلف از این دو لایه بر روی پارامتر‏های JSC, VOC, FF, η بررسی شده است. نتایج اولیه نشان داد که افزایش ضخامت در لایۀ بافر می‎تواند بازدهی سلول را کاهش دهد. ادامۀ شبیه‎سازی‎ها نشان داد در شرایطی که لایۀ کادمیوم سلنید نزدیک به لایۀ جاذب (CIGS) باشد، حالت بهینه برای لایۀ بافر، متشکل از 40 نانومتر از کادمیوم سولفید و 10 نانومتر از کادمیوم سلنید است و می‎تواند بازدهی را به 19/25% افزایش دهد. همچنین نمودار انرژی نشان داد که در حالت بهینه، حرکت الکترون‎ها و حفره‎ها به‌صورت فرایند آبشاری و بدون سد اتفاق می‏افتد که موجب افزایش قابل توجه بازدهی شده است.

کلیدواژه‌ها


[1] Pettersson, J., Modelling band gap gradients and Cd-free buffer layers in Cu (In, Ga) Se2 solar cells, Ph.D. Thesis, Acta Universitatis Upsaliensis, 2012. [2] Camacho-Espinosa, E., López-Sánchez, A., Rimmaudo, I., Mis-Fernández, R. and Peña, J. L., All-sputtered CdTe solar cell activated with a novel method", Solar Energy Vol. 193, pp. 31-36, 2019. [3] Ahmad, F., Anderson, T. H., Monk, P. B. and Lakhtakia, A. "Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading: erratum", Applied optics, Vol. 59, pp. 2615-2615, 2020. [4] Li, W., Li, W., Feng, Y. and Yang, C., "Numerical analysis of the back interface for high efficiency wide band gap chalcopyrite solar cells", Solar Energy, Vol. 180, pp. 207-215, 2019. [5] Regmi, G., Ashok, A., Chawla, P., Semalti, P., Velumani, S., Sharma, S. N. and Castaneda, H, "Perspectives of chalcopyrite-based CIGSe thin-film solar cell", a review. Journal of Materials Science: Materials in Electronics, Vol. 31, pp. 7286-7314, 2020. [6] Niki, S., Contreras, M., Repins, I., Powalla, M., Kushiya, K., Ishizuka, S. and Matsubara, K., "CIGS absorbers and processes Progress in Photovoltaics", Research and Applications, Vol. 18, pp. 453-466, 2010. [7] Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., Sugimoto, H. "Cd-free Cu (In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%", IEEE Journal of Photovoltaics, Vol. 9, pp. 1863-1867, 2019. [8] Kumar, A., Goyal, A. K., Gupta, U., Gupta, N. and Chaujar, R., "Increased efficiency of 23% for CIGS solar cell by using ITO as front contact", Materials Today, Proceedings, Vol. 28, pp. 361-365, 2020. [9] Ghorbani, T., Zahedifar, M., Moradi, M. and Ghanbari, E., "Influence of affinity, band gap and ambient temperature on the efficiency of CIGS solar cells", Optik, Vol. 223, pp. 165541, 2020. [10] AlZoubi, T. and M. Moustafa, "Numerical optimization of absorber and CdS buffer layers in CIGS solar cells using SCAPS", Int. J. Smart Grid Clean Energy, Vol. 8, pp. 291-298, 2019. [11] Bagul, B. Y., "Growth and characterization of cadmium sulphide films synthesized by low cost technique for photovoltaic device applications", Journal of Engineering Sciences, Vol. 11, PP. 356-362, 2020. [12] Tobbeche, S., Kalache, S., Elbar, M., Kateb, M. N. and Serdouk, M. R., "Improvement of the CIGS solar cell performance: structure based on a ZnS buffer layer", Optical and Quantum Electronics, Vol. 51, PP. 1-13, 2019. [13] Moradi, M., Teimouri, R., Saadat, M. and Zahedifar, M., "Buffer layer replacement: a method for increasing the conversion efficiency of CIGS thin film solar cells", Optik, Vol. 136, PP. 222-227,‌ 2017. [14] Barman, B. and Kalita, P. K., "Influence of back surface field layer on enhancing the efficiency of CIGS solar cell", Solar Energy, Vol. 216, PP. 329-337, 2021. [15] Kato, T. Wu, J. Hirai, Y. Sugimoto, H. and Bermudez, V., "Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu (In, Ga)(Se, S)2", IEEE Journal of Photovoltaics, Vol. 9, pp. 325-330, 2018. [16] Bouabdelli, M. W., Rogti, F., Maache, M. and Rabehi, A., "Performance enhancement of CIGS thin-film solar cell", Optik, Vol. 216, pp. 164948,‌ 2020. [17] Tobbeche, S., Kalache, S., Elbar, M., Kateb, M. N. and Serdouk, M. R., "Improvement of the CIGS solar cell performance: structure based on a ZnS buffer layer", Optical and Quantum Electronics, Vol. 51, PP. 1-13, 2019. [18] Gray, J. L., The physics of the solar cell. Handbook of photovoltaic science and engineering, Vol. 2, pp. 82-128, 2003. [19] Zhou, W., Nanoimprint lithography: an enabling process for nanofabrication. Springer Science & Business Media, 2013. [20] Hayat, M., Babaji, G., Said, M. and Ahmed, A. B., "Determination of the effect of layer thickness on the efficiency of cigs-based solar cells using Scaps-1d", ACTA Scientific Applied Physics, Vol. 1, PP. 10-15,‌ 2020. [21] Reyes-Banda, M. G., Regalado-Perez, E., Pintor-Monroy, M. I., Hernández-Gutierrez, C. A., Quevedo-López, M. A. and Mathew, X., "Effect of Se diffusion and the role of a thin CdS buffer layer in the performance of a CdSe/CdTe solar cell", Superlattices and Microstructures, Vol. 133, PP. 106219, 2019. [22] Tan, F., Wang, Z., Qu, S., Cao, D., Liu, K., Jiang, Q. and Wang, Z., "A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array: PbS quantum dot solar cells", Nanoscale, Vol. 8, PP. 10198-10204,‌ 2016.