مطالعۀ عددی به‌منظور بررسی همزمان تأثیر زمان‌بندی پاشش سوخت و ترکیبات گاز سنتز بر عملکرد و انتشار آلاینده‌های موتور اشتعال تراکمی با واکنش‌پذیری کنترل‌شده

نویسندگان

1 دانشگاه آزاد اسلامی واحد تهران شمال

2 دانشگاه آزاد اسلامی واحد تهران مرکزی

چکیده

در این تحقیق تأثیرات همزمان زمان‌بندی پاشش سوخت و به‌کارگیری گازهای سنتزی بر تولید آلاینده‌ها و عملکرد یک موتور اشتعال تراکمی با واکنش‌پذیری کنترل‌شده بررسی‌ شده است. همچنین حل عددی تغییر زمان‌بندی پاشش سوخت از 10 تا 30 درجه قبل از نقطۀ مرگ بالا و ترکیبات سوخت در سه حالت دیزل معمولی، دیزل به‌همراه دو نسبت20 و 40% گاز سنتز (شامل ترکیب هیدروژن و مونوکسید کربن)، با حفظ انرژی ثابت برای هر سیکل، استراتژی‌هایی هستند که مورد مطالعه قرارگرفته‌اند. نتایج به‌دست‌آمده نشان می‌دهد که با افزایش نسبت گاز سنتز، فشار و نرخ آزادسازی حرارت درون سیلندر افزایش‌ می‌یابد، درحالی‌که با تعویق زمان‌بندی پاشش سوخت این مقادیر کاهشی هستند. علاوه بر این تولید اکسیدهای نیتروژن با افزودن گازهای سنتز، همانند مونوکسید کربن افزایش ‌یافته، در صورتی‌ که تعویق در زمان‌بندی پاشش سوخت موجب کاهش اکسیدهای نیتروژن و دی‌اکسید کربن و افزایش مونوکسید کربن شده است. آلایندۀ ذرات معلق با افزودن ترکیب گاز سنتز و افزایش آن، به‌شدت کاهش ‌یافته است که روند کاهشی آن با تعویق در زمان‌بندی پاشش سوخت ادامه می‌یابد. از طرفی استفاده از گاز سنتز با تعویق در زمان‌بندی پاشش سوخت، باعث کاهش توان و بازده حرارتی اندیکاتوری و افزایش مصرف سوخت اندیکاتوری می‌شود. نهایتاً نسبت 40 درصدی گاز سنتز و زمان‌بندی پاشش سوخت 10 درجه قبل از نقطۀ مرگ بالا، استراتژی مناسبی برای کاهش آلاینده‌ها (ذرات معلق و دی‌اکسید کربن) است.

کلیدواژه‌ها


[1] Wissink, M. and Reitz, R.D., "Direct dual fuel stratification, a path to combine the benefits of RCCI and PPC", SAE Int. J. Engines, Vol. 8, pp 878–889, 2015. [2] Sellnau, M.C, Sinnamon, J., Hoyer, K. and Husted, H., "Full-time gasoline direct-injection compression ignition (GDCI) for high e_ciency and low NOX and PM", SAE Int. J. Engines, Vol. 5, pp 300–314, 2012. [3] Kokjohn, S.L. and Reitz, R.D., "An investigation of charge preparation strategies for controlled PPCI combustion using a variable pressure injection system", Int. J. Eng. Res., Vol. 11, pp 257–282, 2010. [4] Lu, X., Han, D. and Huang, Z., "Fuel design and management for the control of advanced compression-ignition combustion modes. Prog. Energy Combust", Sci. Vol. 37, pp 741–783, 2011. [5] Paykani, A., Kakaee, A.H., Rahnama, P. and Reitz, R.D. "Progress and recent trends in reactivity-controlled compression ignition engines", Int. J. Engine Res. Vol. 17, pp. 481–524, 2016. [6] Kokjohn, S., Hanson, R., Splitter, D., Kaddatz, J. and Reitz, R., "Fuel reactivity controlled compression ignition (RCCI) combustion in light-and heavy-duty engines", SAE Int. J. Engines, Vol. 4, pp. 360–374, 2011. [7] Walker, N.R., Wissink, M.L., DelVescovo, D.A. and Reitz, R.D., "Natural gas for high load dual-fuel reactivity controlled compression ignition in heavy-duty engines", J. Energy Resour. Technol. Vol. 137, pp 42202-42209, 2015. [8] Nieman, D.E., Dempsey, A.B. and Reitz, R.D., "Heavy-duty RCCI operation using natural gas and diesel", SAE Int. J. Engines, Vol. 5, pp 270–285, 2012. [9] Dempsey, A.B., Adhikary, B.D., Viswanathan, S. and Reitz, R.D., "Reactivity controlled compression ignition using premixed hydrated ethanol and direct injection diesel", J. Eng. Gas Turbines Power, Vol. 134, pp 82806-82817, 2012. [10] Benajes, J., Molina, S., García, A. and Monsalve-Serrano, J., "E_ects of direct injection timing and blending ratio on RCCI combustion with di_erent low reactivity fuels. Energy Convers", Manag., Vol. 99, pp. 193–209, 2015. [11] Li, J., Yang, W., Zhou, D. "Review on the management of RCCI engines. Renew. Sustain. Energy Rev. Vol. 69, pp. 65–79, 2017. [12] Sahoo, B.B., Sahoo, N., Saha, U.K. Effect of H2: CO ratio in syngas on the performance of a dual fuel diesel engine operation". Appl. Therm. Eng., Vol. 49, pp. 139–146, 2012. [13] Bika, A.S., Franklin, L. and Kittelson, D., "Cycle E_ciency and Gaseous Emissions from A Diesel Engine Assisted with Varying Proportions of Hydrogen and Carbon Monoxide (Syngas Gas)", SAE Technical Paper: Warrendale, PA, USA, 2011. [14] Rahnama, P., Paykani, A., Bordbar, V. and Reitz, R.D., "A numerical study of the e_ects of reformer gas composition on the combustion and emission characteristics of a natural gas/diesel RCCI engine enriched with reformer gas", Fuel, Vol. 209, pp. 742–753, 2017. [15] Rahnama, P., Paykani, A. and Reitz, R.D., "A numerical study of the e_ects of using hydrogen, reformer gas and nitrogen on combustion, emissions and load limits of a heavy duty natural gas/diesel RCCI engine", Appl. Energy, Vol. 193, pp. 182–198, 2017. [16] Chuahy, F.D.F. and Kokjohn, S., "System and Second Law Analysis of the E_ects of Reformed Fuel Composition in “Single” Fuel RCCI Combustion", SAE Int. J. Engines, Vol. 11, pp 861–878, 2018. [17] Chuahy, F.D.F. and Kokjohn, S.L., "E_ects of reformed fuel composition in “single” fuel reactivity controlled compression ignition combustion", Appl. Energy, Vol. 208, pp. 1–11, 2017. [18] Chuahy, F.D.F. and Kokjohn, S.L., "High e_ciency dual-fuel combustion through thermochemical recovery and diesel reforming", Appl. Energy, Vol. 195, pp. 503–522, 2017. [19] Xu, Z., Jia, M., Li, Y., Chang, Y., Xu, G., Xu, L. and Lu, X., "Computational optimization of fuel supply, syngas composition, and intake conditions for a syngas/diesel RCCI engine", Fuel, Vol. 234, pp. 120–134, 2018. [20] Rutland, C.J. "Modeling Investigation of Di_erent Methods to Suppress Engine Knock on a Small Spark Ignition Engine", J. Eng. Gas Turbines Power, Vol. 137, pp. 61506, 2016. [21] Costa, M., Villetta, M.L., Massarotti, N., Piazzullo, D., Rocco, V. "Numerical analysis of a compression ignition engine powered in the dual-fuel mode with syngas and biodiesel", Energy, Vol. 137, pp. 969–979, 2017. [22] Reza mahmoodi. et al, "Effect of reformed biogas as a low reactivity fuel on performance and emissions of a RCCI engine with reformed biogas/diesel dual-fuel combustion", International Journal of Hydrogen Energy Vol. 46, pp. 16494-16512, 2021 [23] Reza mahmoodi. et al, "Effect of reformed biogas as a low reactivity fuel on performance and emissions of a RCCI engine with reformed biogas/diesel dual-fuel combustion", International Journal of Hydrogen Energy Vol. 46, pp. 16494-16512, 2021. [24] Reza mahmoodi. et al, "Effect of reformed biogas as a low reactivity fuel on performance and emissions of a RCCI engine with reformed biogas/diesel dual-fuel combustion", International Journal of Hydrogen Energy, Vol. 46, pp. 16494-16512, 2021. [25] Tess, M. J., Chang-Wook, L. and Reitz, R. D., "Diesel engine size scaling at medium load without EGR", SAE International Journal of Engines, Vol. 4, pp. 1993-2009, 2011. [26] Verma, S., Das, L.M., Kaushik, S.C. and Tyagi, S.K., "An experimental investigation of exergetic performance and emission characteristics of hydrogen supplemented biogas-diesel dual fuel engine", Int J Hydrogen Energy, Vol. 43, pp. 2452–68, 2018. [27] Tess, M. J., Chang-Wook, L. and Reitz, R. D., "Diesel engine size scaling at medium load without EGR", SAE International Journal of Engines, Vol. 4, pp. 1993-2009, 2011. [28] Richards, K., Senecal, P.K. and Pomraning, E., CONVERGE v2. 3 Manual. Convergent Science, Inc., Madison, WI, 2016. [29] Patel, S. Kong, and Reitz, R. D., "Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations", SAE Technical Paper 2004-01-0558, 2004, https://doi. org/10. 4271/2004-01-0558. [30] Wang, H., Reitz, R. D., Yao, M., Yang, B., Jiao, Q. and Qiu, L., "Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction", Combustion and Flame, Vol. 160, pp. 504-519, 2013. [31] Kokjohn, S. L. and Reitz, R. D., "Reactivity controlled compression ignition and conventional diesel combustion: a comparison of methods to meet light-duty NOx and fuel economy targets", International Journal of Engine Research, Vol. 14, pp. 452-468, 2013. [32] Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B. and C. G. Speziale, "Development of turbulence models for shear flows by a double expansion technique", Physics of Fluids A: Fluid Dynamics, Vol. 4, pp. 1510-1520, 1992. [33] Yakhot, V., et al., "Development of turbulence models for shear flows by a double expansion technique", Api.Physics of Fluids A: Fluid Dynamics, Vol. 4(7): pp. 1510-1520, 1992. [34] Amsden, A. A., Orourke, P. J. and Butler, T. D. KIVA-2: "A computer program for chemically reactive flows with sprays", NASA STI/recon technical report N, pp. 89, 1989. [35] Naber, J. and Reitz, R. D., "Modeling engine spray/wall impingement", SAE transactions, pp. 118-140, 1988. [36] Chuahy, F.D. and Kokjohn, S.L., "High efficiency dual-fuel combustion through thermochemical recovery and diesel reforming", Applied energy, Vol. 195, pp. 503-522, 2017.