[1] Mwesigye, A., Bello-Ochende, T., Meyer, J. P., "Numerical investigation of entropy generation in a parabolic trough receiver at different concentration ratios", Energy, Vol. 53, pp. 114-127, 2013.
[2] Dupont, E., Koppelaar, R., and Jeanmart H., "Global available solar energy under physical and energy return on investment constraints", Applied Energy, Vol. 257, p. 113968, 2020.
[3] Bellos, E., and Tzivanidis, C., "Thermal efficiency enhancement of nanofluid-based parabolic trough collectors", Journal of Thermal Analysis and Calorimetry, Vol. 7, 2018.
[4] Ebrazeh, Sh., Sheikholeslami, M., "Applications of nanomaterial for parabolic trough collector", Powder Technology, 2020.
[5] Abed, N., Afgan, I., "An extensive review of various technologies for enhancing the thermal and optical performances of parabolic trough collectors", International Journal of Energy Research, Vol. 44, No. 7, pp. 5117–5164, 2020.
[6] Mwesigye, A., Huan, Z., "Thermal and Thermodynamic Performance of a Parabolic Trough Receiver with Syltherm800-Al2O3 Nanofluid as the Heat Transfer Fluid", Energy Procedia, Vol. 75, pp. 394–402, 2015.
[7] Kasaeian, A., Daneshazarian, R., Rezaei, R., Pourfayaz, F. Kasaeian, G., "Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector", Journal of Cleaner Production, Vol. 158, pp. 276–284, 2017.
[8] Kasaeian, A., Daviran, S., Azarian, R.D., Rashidi, A., "Performance evaluation and nanofluid using capability study of a solar parabolic trough collector", Energy conversion and management, Vol. 89, pp. 368-375, 2015.
[9] Babu, J. R., Kumar, K. K., Rao, S. S., "State-of-art review on hybrid nanofluids State-of-art review on hybrid nano fluids", Renewable and Sustainable Energy Reviews, Vol. 77, pp. 551–565, 2017.
[10] Sidik, N.A.C., Jamil, M.M., Japar, W.M.A.A., Adamu, I.M., "A review on preparation methods, stability and applications of hybrid nanofluids", Renewable and Sustainable Energy Reviews, Vol. 80, pp. 1112–1122, 2017.
[11] Sundar, L.S., Singh, M.K., Sousa, A.C., "Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids", International Communications in Heat and Mass Transfer, Vol. 52, pp. 73–83, 2014.
[12] Verma, S.K., Tiwari, A.K., Tiwari, S., Chauhan, D.S., "Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid", Solar Energy, Vol. 167, pp. 231–241, 2018.
[13] Bellos, E., Tzivanidis, C., "Thermal analysis of parabolic trough collector operating with mono and hybrid nano fluids", Sustainable Energy Technologies and Assessments, Vol. 26, pp. 105-115, 2018.
[14] Al-Oran, O., Lezsovits, F. Aljawabrah, A., "Exergy and energy amelioration for parabolic trough collector using mono and hybrid nanofluids", Journal of Thermal Analysis and Calorimetry, Vol. 140, pp. 1579–1596, 2020.
[15] Menbari, A., Alemrajabi, A. A., Rezaei, A., "Experimental investigation of thermal performance for direct absorption solar parabolic trough collector (DASPTC) based on binary nanofluids", Experimental Thermal and Fluid Science, Vol. 80, pp. 218–227, 2017.
[16] Minea, A. A., El-Maghlany, W.M., "Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: Recent findings and numerical comparison", Renewable Energy, Vol. 120, pp. 350–364, 2018.
[17] Ekiciler, R., Arslan, K., Turgut, O. and Kurşun, B., "Effect of hybrid nanofluid on heat transfer performance of parabolic trough solar collector receiver", Journal of Thermal Analysis and Calorimetry, pp.1-18, 2020.
[18] Salman, S., Talib, A. A., Saadon, S., Sultan, M. H., "Hybrid nanofluid flow and heat transfer over backward and forward steps: A review", Powder Technology, Vol. 363, pp. 448–472, 2020.
[19] Verma, S. K., Tiwari, A. K., Chauhan, D. S., "Experimental evaluation of flat plate solar collector using nanofluids", Energy Conversion and Management, Vol. 134, pp. 103–115, 2017.
[20] Verma, S. K., Tiwari, A. K., Tiwari, S., Chauhan, D. S., "Performance analysis of hybrid nano fl uids in flat plate solar collector as an advanced working fluid", Solar Energy, Vol. 167, pp. 231–241, 2018.
[21] Kim, H., Ham, J., Park, C. Cho, H., "Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids", Energy, Vol. 94, pp. 497–507, 2016.
[22] Maxwell J. C., A treatise on electricity and magnetism, vol. 1. Oxford: Clarendon Press, 1873.
[23] Brinkman H. C., "The viscosity of concentrated suspensions and solutions", The Journal of Chemical Physics, Vol. 20, No. 4, p. 571, 1952.
[24] Bellos, E., and Tzivanidis, C., "A detailed exergetic analysis of parabolic trough collectors", Energy Conversion and Management, Vol. 149, pp. 275-292, 2017.
[25] F-Chart Software, Engineering Equation Solver (EES) Professional V10.090-3D (6/15/16), http://www 2016 fchartsoftware.com/ees/.
[26] Duffie, J.A., Beckman, W.A. and Blair, N., Solar Engineering of Thermal Processes, Photovoltaics and Wind. John Wiley & Sons, 2020.
[27] Behar, O., Khellaf, A., Mohammedi, K., "A novel parabolic trough solar collector model – Validation with experimental data and comparison to Engineering Equation Solver (EES)", Energy Conversion and Management, Vol. 106, pp. 268–281, 2015
[28] Swinbank W. C., "Long‐wave radiation from clear skies", Quarterly Journal of the Royal Meteorological Society, Vol. 89, No. 381, pp. 339–348, 1963.
[29] Mullick S. C., Nanda S. K., "An improved technique for computing the heat loss factor of a tubular absorber", Solar Energy, Vol. 42, No. 1, pp. 1–7, 1989.
[30] Forristall R., "Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver", 2003.
[31] Mahian, O., Kianifar, A., Sahin, A.Z. and Wongwises, S., "Entropy generation during Al2O3/water nanofluid flow in a solar collector: Effects of tube roughness, nanoparticle size, and different thermophysical models", International Journal of Heat and Mass Transfer, Vol. 78, pp. 64–75, 2014.
[32] Aghaei, A., Sheikhzadeh, G. A., Dastmalchi, M., Forozande, H., "Numerical investigation of turbulent forced-convective heat transfer of Al2O3-water nanofluid with variable properties in tube", Ain Shams Engineering Journal, Vol. 6, No. 2, pp. 577–585, 2015.
[33] Bergman, T.L., Lavine, A.S., Fundamentals of heat and mass transfer. John Wiley & Sons New York, 2017.
[34] Sundar, L. S., Naik, M. T., Sharma, K. V., Singh, M. K., Reddy, T. C. S., "Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid", Experimental Thermal and Fluid Science, Vol. 37, pp. 65–71, 2012.
[35] Petela, R., "Exergy of undiluted thermal radiation", Solar Energy, Vol. 74, No. 6, pp. 469–488, 2003.
[36] Mwesigye, A., Yılmaz, İ. H., Meyer, J. P., "Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-Therminol®VP-1 nanofluid", Renewable Energy, Vol. 119, pp. 844–862, 2018.
[37] Allouhi, A., A., M.B., Saidur, R., Kousksou, T., Jamil, A., 2018. "Energy and exergy analyses of a parabolic trough collector operated with nanofluids for medium and high temperature applications", Energy Conversion and Management, Vol. 155, pp.201-217.
[38] Okonkwo, E. C., Wole-Osho, I., Kavaz, D., Abid, M., "Comparison of experimental and theoretical methods of obtaining the thermal properties of alumina / iron mono and hybrid nano fluids", Journal of Molecular Liquids, Vol. 292, p. 111377, 2019.
[39] Sundar, L. S., Singh, M. K., Sousa, A. C., "Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications", International Communications in Heat and Mass Transfer, Vol. 44, pp. 7–14, 2013.
[40] Edalatpour M., Solano J. P., "Thermal-hydraulic characteristics and exergy performance in tube-on-sheet flat plate solar collectors: Effects of nanofluids and mixed convection", International Journal of Thermal Sciences, Vol. 118, pp. 397–409, 2017.
[41] https://www.loikitsdistribution.com/files/syltherm-800-technical-data-sheet.pdf.
[42] Minea A. A., "Hybrid nanofluids based on Al2O3, TiO2 and SiO2 Numerical evaluation of different approaches", International Journal of Heat and Mass Transfer, Vol. 104, pp. 852–860, 2017.
[43] Pak, B. C., Cho, Y.I., "Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles", Experimental Heat Transfer an International Journal, Vol. 11, No. 2, pp. 151-170, 1998.
[44] Alsarraf, J., Shahsavar, A., Mahani, R. B., Talebizadehsardari, P., "Turbulent forced convection and entropy production of a nanofluid in a solar collector considering various shapes for nanoparticles", International Communications in Heat and Mass Transfer, Vol. 117, p. 104804, 2020.
[45] شیخزاده، قنبرعلی، نظیفیفرد، محمد، مداحیان، رضا، کاظمی، خدیجه، «بررسی تغییرات هیدرودینامیکی- حرارتی یک نانوسیال در یک لولۀ مجهز به نوار پیچشی»، مهندسی و مدیریت انرژی، شمارۀ 8، جلد 4، صفحات 86ـ99، 1397.
[46] Bellos, E., Tzivanidis, C., and Tsimpoukis, D., "Thermal, hydraulic and exergetic evaluation of a parabolic trough collector operating with thermal oil and molten salt based nanofluids", Energy Conversion and Management, Vol. 156, pp. 388-402, 2018.