مدل‌سازی عددی، سه‌بعدی و گذرای توزیع دما و توان خروجی در ماژول فتوولتائیک

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه شیراز

چکیده

به‌دلیل تأثیر دمای ماژول‌ فتوولتائیک در توان خروجی، در این پژوهش سعی بر آن است که با حل عددی معادلات بقای انرژی، توزیع دما در یک ماژول فتوولتائیک محاسبه و در نتیجه توان خروجی آن دقیق‌تر پیش‌بینی گردد. برای این منظور، به مدل‌سازی عددی چند ماژول فتوولتائیک با جزئیات کامل در نرم‌افزار کامسول پرداخته شده است. روش جدیدی برای محاسبۀ توان خروجی به‌عنوان تابعی از دمای ماژول فتوولتائیک ارائه و به حل توأمان آن با معادلات حرارتی پرداخته شده است. شبیه‌سازی حاضر به‌صورت سه‌بعدی و گذراست و لایه‌های مختلف ماژول به‌طور جداگانه در نظر گرفته شده‌اند. همچنین تأثیر استفاده از روابط متفاوت ضریب اتلاف حرارت جابه‌جایی اجباری در توزیع دما و توان خروجی ماژول فتوولتائیک مورد مطالعه قرار گرفته است. نتایج نشان می‌دهد که ویژگی‌های ذکرشده منجر به پیش‌بینی دقیق‌تر توزیع دما و در نتیجه، عملکرد ماژول فتوولتائیک می‌شود.

کلیدواژه‌ها


]1[‌ یحیی‌زاده، میثم، صادقی، معظمه، فاتحی مرج، حسن، بابایی، سید میلاد، افتخاری، محمدعلی، «بهبود عملکرد و صرفه‌جویی انرژی با بهینه‌سازی از طریق الگوریتم رقابت استعماری در سیستم ردیاب خورشیدی دومحورۀ جدید»، مهندسی و مدیریت انرژی، سال دهم، شمارۀ اول، صفحۀ ۲ـ۱۵، 1399. ]2 [ حسینی، سید احمد، کرمانی، علی ماشاءالله، عرب‌حسینی، اکبر، «مطالعۀ اثر رطوبت و دمای محیط بر عملکرد پنل‌های فتوولتائیک»، مهندسی و مدیریت انرژی، سال هشتم، شمارۀ اول، صفحه 54ـ65، 1397. [3] Tamizhmani, G., Ji, L., Tang, Y., Petacci, L. and Osterwald, C., "Photovoltaic Module Thermal/Wind Performance: Long-Term Monitoring and Model Development for Energy Rating", NCPV and Solar Program Review Meeting, Denver, Colorado, 24-26 March, 2003. [4] Du, Y., Fell, C. J., Duck, B., Chen, D., Liffman, K., Zhang, Y., Gu, M. and Zhu, Y., "Evaluation of Photovoltaic Panel Temperature in Realistic Scenarios", Energy Conversion and Management, Vol. 108, pp. 60–67, 2016. [5] Tuomiranta, A., Marpu, P., Munawwar, S. and Ghedira, H., "Validation of Thermal Models for Photovoltaic Cells Under Hot Desert Climates: A Review of Efficiency/Power Correlations", Energy Procedia, Vol. 57, pp. 136–143, 2014. [6] Dubey, S., Sarvaiya, J. N. and Seshadri, B., "Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in The World - A Review", Energy Procedia, Vol. 33, pp. 311–321, 2013. [7] Skoplaki, E. and Palyvos, J. A., "On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations", Solar Energy, Vol.83, No. 5, pp. 614–624, 2009. [8] Fesharaki, V. J., Dehghani, M., Fesharaki, J. J. and Tavasoli, H., "The Effect of Temperature on Photovoltaic Cell Efficiency", Proceedings of the 1st International Conference on Emerging Trends in Energy Conservation –ETEC Tehran, Tehran, Iran, 20-21 November, 2011. [9] Gaglia, A. J., Lykoudis, S., Argiriou, A. A., Balaras, C. A. and Dialynas, E., "Energy Efficiency of PV Panels under Real Outdoor Conditions-An Experimental Assessment in Athens, Greece", Renewable Energy, Vol. 101, pp. 236–243, 2017. [10] Mattei, M., Notton, G., Cristofari, C., Muselli, M. and Poggi, P., "Calculation of the Polycrystalline PV Module Temperature Using a Simple Method of Energy Balance", Renewable Energy, Vol. 31, No. 4, pp. 553–567, 2006. [11] ‌ Lobera, D. T. and Valkealahti, S., "Dynamic Thermal Model of Solar PV Systems under Varying Climatic Conditions", Solar Energy, Vol. 93, pp. ‌183–194, 2013. [12] Notton, G., Cristofari, C., Mattei, M. and Poggi, P., "Modelling of a Double-Glass Photovoltaic Module Using Finite Differences", Applied Thermal Engineering, Vol. 25, No. 17-18, pp. 2854–2877, 2005. [13] Rezania, A., Sera, D. and Rosendahl, L. A., "Coupled Thermal Model of Photovoltaic-Thermoelectric Hybrid Panel for Sample Cities In Europe", Renewable Energy, Vol. 99, pp. 127–135, 2016. [14] Elarga, H., Goia, F., Zarrella, A., Dal, A. and Benini, E., "Thermal and Electrical Performance Of An Integrated PV-PCM System In Double Skin Facades : A Numerical Study", Solar Energy, Vol. 136, pp. 112–124, 2016. [15] Zhao, B., Chen, W., Hu, J., Qiu, Z., Qu, Y. and Ge, B., "A Thermal Model for Amorphous Silicon Photovoltaic Integrated in ETFE Cushion Roofs", Energy Conversion and Management, Vol. 100, pp. 440–448, 2015. [16] Torres-lobera, D. and Valkealahti, S., "Inclusive Dynamic Thermal and Electric Simulation Model of Solar PV Systems Under Varying Atmospheric Conditions", Solar Energy, Vol. 105, pp. 632–647, 2014. ‌[17] Kant, K., Shukla, A., Sharma, A. and Henry, P., "Thermal Response of Poly-Crystalline Silicon Photovoltaic Panels : Numerical Simulation and Experimental Study", Solar Energy, Vol. 134, pp. 147–155, 2016. [18] Weiss, L., Amara, M. and Ménézo, C., "Impact of Radiative-Heat Transfer on Photovoltaic Module Temperature", Progress in Photovoltaics, Vol. 24, No. 1, pp. 12–27, 2016. [19] Siddiqui, M. U., Arif, A. M., Kelley, L. and Dubowsky, S., "Three-Dimensional Thermal Modeling of a Photovoltaic Module Under Varying Conditions", Solar Energy, Vol. 86, No. 9, pp. 2620–2631, 2012. [20] Siddiqui, M. U., Multiphysics Modeling of Photovoltaic Panels and Arrays with Auxiliary Thermal Collectors, Master’s Thesis, University of Petroleum and Mineral, Dhahran, Saudi Arabia, 2011. ‌[21] Kaplani, E. and Kaplanis, S., "Thermal Modelling and Experimental Assessment of the Dependence of PV Module Temperature on Wind Velocity and Direction‌, Module Orientation and Inclination", Solar Energy, Vol. 107, pp. 443–460, 2014. ‌[22] Elibol, E., Özmen, Ö. ‌T., Tutkun, N. and Köysal, O., "Outdoor Performance Analysis of Different PV Panel Types", Renewable and Sustainable Energy Reviews, Vol. 67, pp. ‌651–661, 2017. [23] Slimani, M. A., Amirat, M., Kurucz, I., Bahria, S., Hamidat, A. and Chaouch, W. B., "A Detailed Thermal-Electrical Model of Three Photovoltaic/Thermal (PV/T) Hybrid Air Collectors And Photovoltaic (PV) Module: Comparative Study under Algiers Climatic Conditions", Energy Conversion and Management, Vol. 133, pp. 458–476, 2017. [24] Tan, D., Handbook for Solar Photovoltaic Systems, Energy Market Authority, 2011. [25] Sartori, E., "Convection Coefficient Equations for Forced Air Flow over Flat Surfaces", Solar Energy, Vol. 80, No. 9, pp. 1063–1071, 2006. [26] Watmuff, J. H., Charters, W. S. and Proctor, D., "Solar and Wind Induced External Coefficients for Solar Collectors", CMES, Vol. 56, pp. 56, 1977. [27] Risser, V. V. and Fuentes, M. K., "Linear Regression Analysis of Flat-Plate Photovoltaic System Performance Data", Proccedings of 5th Photovoltaic Solar Energy Conference, pp. 623–627, Athens, Greece, 17-21 October 1984.