یک روش تطبیقی برای تقسیم دقیق بار‌های هارمونیکی و نامتعادل در ریزشبکه‌های جزیره‌ای

نویسندگان

1 واحد ارومیه، دانشگاه آزاد اسلامی

2 دانشگاه صنعتی امیر‌کبیر

چکیده

در این مقاله، یک روش برای تقسیم دقیق بار‌های هارمونیکی و نامتعادل در ریزشبکه‌های جزیره‌ای پیشنهاد شده است. روش پیشنهادی می‌تواند بر اساس قاعدۀ جریان‌های چرخشی و توان‌های هارمونیکی و نامتعادل تأمین‌شده توسط هر واحد تولید پراکنده (DG)، به‌صورت تطبیقی، تقسیم بار بین DGها را بهبود بخشد. در مقایسه با روش‌های پیشنهادی قبلی، روش پیشنهادی نیازی به یک کنترل‌کنندۀ مرکزی اختصاصی ندارد و ارتباطات فقط بین DGهای مجاور مورد نیاز است. همچنین در این روش، نیازی به داشتن اطلاعات از مقادیر امپدانس فید‌ر DGها و وضعیت بارگذاری نیست و اثر روش پیشنهادی روی کیفیت ولتاژ خروجی DGها نیز کمتر خواهد بود. فرایند طراحی روش پیشنهادی به‌طور کامل تشریح گردیده و به‌منظور نشان دادن کارایی آن، مطالعات شبیه‌سازی بر روی یک ریزشبکه جزیره‌ای نمونه در محیط Matlab/Simulink انجام شده است.

کلیدواژه‌ها


[1] IEEE Standard 1547.4-2011, "IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems", 2011. [2] Wei, X., Xiangning, X. and Pengwei, C., "Overview of Key Microgrid Technologies", International Transactions on Electrical Energy Systems, Vol. 28, No. 7, pp. e2566, 2018. [3] براتی، حسن، امین‌زاده، هادی، «کنترل توان و فرکانس بار مبتنی بر روش کنترل شیب افتی بهبودیافته در سیستم‌های ترکیبی توربین بادی، فتوولتائیک و پیل سوختی در ریزشبکه‌های مستقل»، مهندسی و مدیریت انرژی، دورۀ 6، شمارۀ 1، صفحۀ 28ـ39، 1395. [4] Ghanizadeh, R., Ebadian, M. and Gharehpetian, G. B., "Non-Linear Load Sharing and Voltage Harmonics Compensation in Islanded Microgrids With Converter Interfaced units", International Transactions on Electrical Energy Systems, Vol. 27, No. 1, pp. e2237, 2017. [5] شهرکی، محمد، فانی، بهادر، صادق‌خانی، ایمان، «کنترل افتی تطبیقی مبتنی بر امپدانس مجازی به‌منظور بهبود تسهیم توان راکتیو در ریزشبکه‌های اینورتری»، مهندسی و مدیریت انرژی، دورۀ 9، شمارۀ 1، صفحه 26ـ35، 1398. [6] John, B., Ghosh, A. and Rajakaruna, S., "Improved Control Strategy for Accurate Load Power Sharing in an Autonomous Microgrid", IET Generation, Transmission & Distribution, Vol. 11, No. 17, pp. 4384-4390, 2017. [7] Moussa, H., Shahin, A., Martin, J., Nahid-Mobarakeh, B., Pierfederici, S. and Moubayed, N., "Harmonic Power Sharing with Voltage Distortion Compensation of Droop Controlled Islanded Microgrids", IEEE Transactions on Smart Grid, Vol. 9 , No. 5 , pp. 5335- 5347, 2018. [8] Moussa, H., Martin, J., Pierfederici, S., Meibody-Tabar, F. and Moubayed, N., "Voltage Harmonic Distortion Compensation with Non-Linear Load Power Sharing in Low-Voltage Islanded Microgrid", Mathematics and Computers in Simulation, Vol. 158, pp. 32-48, 2018. [9] Zhou, J, Kim, S., Zhang, H., Sun, Q. and X Han, R., "Consensus-based Distributed Control for Accurate Reactive, Harmonic and Imbalance Power Sharing in Microgrids", IEEE Transactions on Smart Grid, Vol. 9, No. 4 , pp. 2453-2467, 2018. [10] He, J., Wei Li, Y. and Blabbjerg, F., "An Enhanced Islanding Microgrid Reactive Power, Imbalance Power, and Harmonic Power Sharing Scheme", IEEE Transactions on Power Electronics, Vol. 31, No. 8, pp. 3389-3401, 2016. [11] Hoang, T. V. and Lee, H. H., "Accurate Power Sharing with Harmonic Power for Islanded Multibus Microgrids", IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 7, No. 2, pp. 1286-1299, 2019 [12] Blanco, C., Tardelli, F., Reigosa, D., Zanchetta, P. and Briz, F., "Design of a Cooperative Voltage Harmonic Compensation Strategy for Islanded Microgrids Combining Virtual Admittance and Repetitive Controller", IEEE Transactions on Industry Applications, Vol. 55 , No. 1 , pp. 680-688, 2019. [13] Blanco, C., Reigosa, D., Vasquez, J. C., Guerrero, J. M. and Briz, F., "Virtual Admittance Loop for Voltage Harmonic Compensation in Microgrids", IEEE Transactions on Industry Applications, Vol. 52 , No. 4 , pp. 3348-3356, 2016. [14] Sabzevari, K., Karimi S., Khosravi F. and Vabdi, H., "Modified Droop Control for Improving Adaptive Virtual Impedance Strategy for Parallel Distributed Generation Units in Islanded Microgrids", International Transactions on Electrical Energy Systems, Vol. 29, No. 1, pp. e2689, 2019. [15] Sreekumar, P. and Khadkikar, V., "A New Virtual Harmonic Impedance cheme for Harmonic Power Sharing in an Islanded Microgrid", IEEE Transactions on Power Delivery , Vol. 31, No. 3, pp. 936-945, 2016. [16] Liu, J., Miura, Y. and Ise, T., "Cost-Function-Based Microgrid Decentralized Control of Unbalance and Harmonics for Simultaneous Bus Voltage Compensation and Current Sharing", IEEE Transactions on Power Electronics, Vol. 34, No. 8, pp. 7397-7410, 2019. [17] Baghaee, H. R, Mirsalim, M., Gharehpetian, G. B. and Talebi, H. A., "Unbalanced Harmonic Power Sharing and Voltage Compensation of Microgrids Using Radial Basis Function Neural Network-Based Harmonic Power-Flow Calculations for Distributed and Decentralized Control Structures", IET Generation, Transmission & Distribution, Vol. 12, No. 7, pp. 1518-1530, 2018. [18] Kim, S., Hyon, S. and Kim, C., "Distributed Virtual Negative-Sequence Impedance Control for Accurate Imbalance Power Sharing in Islanded Microgrids", Sustainable Energy, Grids and Networks, Vol. 16, pp. 28-36, 2018. [19] Micallef, A. and Apap, M., Spiteri-Staines, C., Guerrero, J. M., "Mitigation of Harmonics in Grid-Connected and Islanded Microgrids Via Virtual Admittances and Impedances", IEEE Transactions on Smart Grid, Vol. 8, No. 2, pp.651-661, 2017. [20] Gholami, S., Saha, A. and Aldeen, M., "Robust Multiobjective Control Method for Power Sharing Among Distributed Energy Resources in Islanded Microgrids with Unbalanced and Nonlinear Loads", International Journal of Electrical Power & Energy Systems, Vol. 94, pp. 321-338, 2018. [21] He, J., Pan, Y., Liang, B. and Wang, C., "A Simple Decentralized Islanding Microgrid Power Sharing Method without Using Droop Control", IEEE Transactions on Smart Grid, Vol. 9, No. 6, pp. 6128-6139, 2018. [22] Rezaei, M. M. and Soltani, J., "A Robust Control Strategy for a Grid-Connected Multi-Bus Microgrid Under Unbalanced Load Conditions", International Journal of Electrical Power & Energy Systems, Vol. 71, pp. 68-76, 2015. [23] Tuladhar, A., Jin, H., Unger, T. and Mauch, K., "Control of Parallel Inverters in Distributed AC Power Systems with Consideration of Line Impedance Effect", IEEE Transactions on Industry Applications, Vol. 36, No. 1, pp. 131–137, 2000. [24] He, J. and Li, Y. W., "An Enhanced Microgrid Load Demand Sharing Strategy", IEEE Transactions on Power Electronics, Vol. 27, No. 9, pp. 3984–3995, 2012. [25] Golsorkhi, M. S., Savaghebi, M., Dah-Chuan Lu, D., Guerrero, J. M. and Vasquez, J. C., "A GPS-Based Control Framework for Accurate Current Sharing and Power Quality Improvement in Microgrids", IEEE Transactions on Power Electronics, Vol. 32, No. 7, pp. 5675- 5687, 2016. [26] Dugan, R. C., McGranaghan, M. F., Santoso, S., Beaty, H. W., Electrical Power Systems Quality, (2nded), New York: McGraw-Hill, 2003. [27] Guerrero, J. M, Vasquez, J. C, Matas, J., de Vicuna LG. and Castilla, M., "Hierarchical Control of Droop-Controlled AC and DC Microgrids- a General Approach Toward Standardization", IEEE Transaction on Industrial Electronics, Vol. 58, No. 1, pp. 158-172, 2001. [28] Ghanizadeh, R. and Gharehpetian, B. G., "Voltage Quality and Load Sharing Improvement in Islanded Microgrids Using Distributed Hierarchical Control", IET Renewable Power Generation, Vol. 13, No. 15, pp. 2888-2898, 2019. [29] Savaghebi, M., Jalilian, A., Vasquez, J. C. and Guerrero, J. M., "Secondary Control Scheme for Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid", IEEE Transactions on Smart Grid, Vol. 3, No. 2, pp. 797-807, 2012. [30] IEEE Standard 1459-2011, "IEEE Standard Definitions for the Measurement of Electric Power Quantities under Sinusoidal, no Sinusoidal, Balanced, or Unbalanced Conditions", 2010. [31] Rodriguez, P., Timbus, A. V., Teodorescu, R., Liserre, M. and Blaabjerg, F., "Flexbile active power control of distributed power generation systems during grid faults", IEEE Transaction on Industrial Electronics, Vol. 54, No. 5, pp. 2583-2592, 2007. [32] Ghanizadeh, R., Ebadian, M. and Gharehpetian, G.B., "Control of Inverter-Interfaced Distributed Generation Units for Voltage and Current Harmonics Compensation in Grid-Connected Microgrids", Journal of Operation and Automation in Power Engineering, Vol. 4, No. 1, pp.66-82, 2016. [33] Ghanizadeh, R. and Gharehpetian, B. G., "Distributed Hierarchical Control Structure for Voltage Harmonic Compensation and Harmonic Current Sharing in Isolated Microgrids", Sustainable Energy, Grids and Networks,Vol. 16, pp. 55-69, 2018. [34] Lorzadeh, I., Askarian Abyaneh, H., Savaghebi, M., Lorzadeh, O., Bakhshai, A. and Guerrero, J. M., "An Enhanced Instantaneous Circulating Current Control for Reactive Power and Harmonic Load Sharing in Islanded Microgrids", Journal of Power Electronics, Vol. 17, No. 6, pp. 1658-1671, 2017. [35] He, J, Y. and Li, Y. W., "Generalized Closed-Loop Control Schemes with Embedded Virtual Impedances for Voltage Source Converters with LC or LCL Filters", IEEE Transactions on Power Electronics, Vol. 27, No. 4, pp. 1850-1861, 2012. [36] Savaghebi, M, Vesquez, J. C., Jalilian, A., Guerrero J. M. and Lee T. L., "Selective Compensation of Voltage Harmonics in Grid-Connected Microgrids", International Journal of Mathematics and Computers in Simulation, Vol. 91, pp. 211-228, 2013.