طراحی و پیاده‌سازی کنترل موتور سنکرون مغناطیس دائم درونی با کنترل‌کنندۀ حالت لغزشی ترمینالی‌ـ انتگرالی با پردازندۀ TMS320F28335

نویسندگان

1 دانشگاه شهرکرد، عضو قطب علمی آنالیز غیرخطی

2 دانشگاه صنعتی شیراز

3 دانشگاه کاشان

چکیده

موتور سنکرون مغناطیس دائم به‌دلیل چگالی انرژی بالا از اهمیت زیادی در صنعت محرکه‌های الکتریکی برخوردار است. کنترل سرعت این موتور در شرایط عدم قطعیت در مقادیر اندوکتانس‌های آن، می‌تواند دچار مشکل شود. در این مقاله، روش کنترل لغزشی ترمینالی‌ـ انتگرالی به‌منظور کنترل سرعت (گشتاور) این موتور به همراه کنترل جریان راستای d مورد استفاده قرار گرفته است. این روش کنترلی همانند روش کنترل لغزشی کلاسیک نسبت به تغییر پارامترهای موتور مقاوم بوده و علاوه ‌بر آن سرعت پاسخ آن نیز سریع‌تر از روش کلاسیک است و در یک زمان محدود خطای کنترل خروجی آن به صفر می‌رسد. در این مقاله، نتایج شبیه‌سازی با استفاده از نرم‌افزار متلب و نتایج پیاده‌سازی کنترل این موتور با کنترل‌کنندۀ لغزشی ترمینالی انتگرالی با پردازندۀ TMS320F28335 ارائه شده است.

کلیدواژه‌ها


[1] Paicu, M., Boldea, I., Andreescu, G.-D. and Blaabjerg, F., "Very Low Speed Performance of Active Flux Based Sensorless Control: Interior Permanent Magnet Synchronous Motor Vector Control Versus Direct Torque and Flux Control", IET Electric Power Applications, Vol. 3, pp. 551-561, 2009. [2] Vas, P., Sensorless Vector and Direct Torque Control: Oxford Univ. Press, 1998. [3] Chi, S., Zhang, Z. and Xu, L., "Sliding-Mode Sensorless Control of Direct-Drive Pm Synchronous Motors for Washing Machine Applications", IEEE Transactions on Industry Applications, Vol. 45, pp. 582-590, 2009. [4] Huo, Q.-H. and Liu, X.-X., "Optimized Control of Permanent Magnet Synchronous Motor", Dianguang yu Kongzhi(Electronics, Optics & Control), Vol. 14, pp. 195-197, 2007. [5] Zhao, Y., Qiao, W. and Wu, L., "An Adaptive Quasi-Sliding-Mode Rotor Position Observer-Based Sensorless Control for Interior Permanent Magnet Synchronous Machines", IEEE Transactions on Power Electronics, Vol. 28, pp. 5618-5629, 2013. [6] Yikang, J. H. H., "Variable Structure Sliding Mode Control for Pmsm Dtc [J]", Transactions of China Electrotechnical Society, Vol. 1, 2006. [7] CUI, J.-f., WANG, H.-m., WANG, C.-y., WAN, J.-z. and MU, G., "Pmsm-Dtc Based on Sliding Mode Variable Structure [J]", Journal of Shenyang University of Technology, Vol. 2, 2008. [8] Jiang, W., He, Y., Liu, W. and Zhou, C., "Design of Sliding-Mode Direct Torque Controller Based on Pmsm [J]", Journal of Projectiles, Rockets, Missiles and Guidance, Vol. 28, pp. 29-32, 2008. [9] Wang, G., Li, Z., Zhang, G., Yu, Y. and Xu, D., "Quadrature Pll-Based High-Order Sliding-Mode Observer for Ipmsm Sensorless Control with Online Mtpa Control Strategy", IEEE Transactions on Energy Conversion, Vol. 28, pp. 214-224, 2012. [10] Venkataraman, S. and Gulati, S., "Control of Nonlinear Systems Using Terminal Sliding Modes", in 1992 American Control Conference, pp. 891-893, 1992. [11] Yazici, I. and Yaylaci, E. K., "Fast and Robust Voltage Control of Dc–Dc Boost Converter by Using Fast Terminal Sliding Mode Controller", IET Power Electronics, Vol. 9, pp. 120-125, 2016. [12] Zheng, X., Li, H., Song, R. and Feng, Y., "Full-Order Terminal Sliding Mode Control for Boost Converter", in 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), pp. 2172-2176, 2016. [13] Feng, Y., Zhou, M., Zheng, X., Han, F. and Yu, X., "Terminal Sliding-Mode Control of Induction Motor Speed Servo Systems", in 2016 14th International Workshop on Variable Structure Systems (VSS), pp. 351-355, 2016. [14] Feng, Y., Zhou, M., Shi, H. and Yu, X., "Flux Estimation of Induction Motors Using High-Order Terminal Sliding-Mode Observer", in Proceedings of the 10th World Congress on Intelligent Control and Automation, pp. 1860-1863, 2012. [15] Zheng, X., Li, Q., Ding, D., Li, P. and Li, H., "Passivity Non-Singular Higher-Order Sliding Mode Control for Direct-Driven Pmsg", in IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, pp. 5575-5581, 2014. [16] Xu, W., Jiang, Y. and Mu, C., "Nonsingular Terminal Sliding Mode Control for Speed Regulation of Permanent Magnet Synchronous Motor with Parameter Uncertainties and Torque Change", in 2015 18th International Conference on Electrical Machines and Systems (ICEMS), pp. 2034-2039, 2015. [17] Yanmin, W., Yuqing, C. and Hongwei, X., "Continuous Non-Singular Terminal Sliding Mode Control of Permanent-Magnet Synchronous Motor with Load Torque Observer", in 2015 34th Chinese Control Conference (CCC), pp. 3264-3268, 2015. [18] Feng, Y., Yu, X. and Han, F., "High-Order Terminal Sliding-Mode Observer for Parameter Estimation of a Permanent-Magnet Synchronous Motor", IEEE Transactions on Industrial Electronics, Vol. 60, pp. 4272-4280, 2012. [19] Li, S., Zhou, M. and Yu, X., "Design and Implementation of Terminal Sliding Mode Control Method for Pmsm Speed Regulation System", IEEE Transactions on Industrial Informatics, Vol. 9, pp. 1879-1891, 2012. [20] Wang, J., Li, S. and Yang, J., "Integral Terminal Sliding Mode Control for Permanent Magnet Synchronous Motor Position Servo System", in Proceedings of the 32nd Chinese Control Conference, pp. 4408-4413, 2013. [21] عباس‌زاده، کریم، روزبهانی، سام، «روش جدید برای استحصال حداکثر توان از سیستم ‌توربین ‌بادی مجهز به ژنراتور القایی ‌دو‌گانۀ تغذیه با کنترل مد ‌لغزشی»، نشریه مهندسی و مدیریت انرژی، شماره 1، صفحه 11ـ22، 1391. [22] Yang, Y., Guo, H. and Qian, H., "A Sensorless Control of Spmsm Based on Sliding Mode Observer with Linear Power Drive Method", in IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 4094-4098, 2017. [23] Liu, X., Yu, H., Yu, J. and Zhao, L., "Combined Speed and Current Terminal Sliding Mode Control with Nonlinear Disturbance Observer for Pmsm Drive", IEEE Access, Vol. 6, pp. 29594-29601, 2018. [24] Wang, D., Liu, J., Miao, S., Yuan, T., Li, Y., Tian, W. and Liu, Z., "Rotor Position Estimation Method for Permanent Magnet Synchronous Motor Based on Super-Twisting Sliding Mode Observer", in 2018 37th Chinese Control Conference (CCC), pp. 5634-5638, 2018. [25] Boroujeni, M. S., Markadeh, G. A. and Soltani, J., "Torque Ripple Reduction of Brushless Dc Motor Based on Adaptive Input-Output Feedback Linearization", ISA Transactions, Vol. 70, pp. 502-511, 2017.