[1] Salgado Conrado, L., Rodriguez-Pulido, A. and Calderon, G., Thermal performance of parabolic trough solar collectors, Renewable and Sustainable Energy Reviews, Vol. 67, pp. 1345-1359, 2017.
[2] Fuqiang, W., Ziming, C., Jianyu, T., Yuan, Y., Yong, S. and Linhua, L., Progress in concentrated solar power technology with parabolic trough collector system: a comprehensive review, Renewable and Sustainable Energy Reviews, Vol. 79, pp. 1314-1328, 2017.
[3] Guo, S., Liu, D., Chu, Y., Chen, X., Xu, C. and Liu, Q., Dynamic behavior and transfer function of collector field in once-through DSG solar trough power plants, Energy, Vol. 121, pp. 513-523, 2017.
[4] Li, Q., Tehrani, S.S.M. and Taylor, R.A., Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage, Energy, Vol. 121, 220-237, 2017.
[5] Suman, S., Khan, M.K. and Pathak, M., Performance enhancement of solar collectors a review, Renewable and Sustainable Energy Reviews, Vol. 49, pp. 192-210, 2015.
[6] Mancini, T., Heller, P., Butler, B., Osborn, B., Schiel, W., Goldberg, V. And et al., Dishstirling systems: an overview of development and status. J Sol Energy Eng 2003; 125: 135.
https://doi.org/10.1115/1.1562634.
[9] Furler, P., Scheffe, J.R. and Steinfeld, A., Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor. Energy Environ Sci 2012; 5: 6098e103.
https://doi.org/10.1039/C1EE02620H.
[10] Badran, A.A., Yousef, I.A., Joudeh, N.K., Hamad R, A.l., Halawa, H. and Hassouneh, H.K., Portable solar cooker and water heater. Energy Convers Manag 2010; 51: 1605-9.
https://doi.org/10.1016/j.enconman.2009.09.03.
[12] Zou, C., Zhang, Y., Falcoz, Q., Neveu, P., Zhang, C., Shu, W. and et al. Design and optimization of a high-temperature cavity receiver for a solar energy cascade utilization system. Renew Energy 2017; 103: 478-489. doi:https://doi.org/10. 1016/j.renene.2016.11.044.
[13] Wang, M. and Siddiqui, K., The impact of geometrical parameters on the thermal performance of a solar receiver of dish-type concentrated solar energy system. Renew Energy 2010; 35: 2501e13.
https://doi.org/10.1016/j.renene.2010.03.021.
[14] Shuai, Y., Xia, X-L. and Tan, H-P., Radiation performance of dish solar concentrator/ cavity receiver systems. Sol Energy 2008; 82: 13e21. doi:https://doi.org/10. 1016/j.solener.2007.06.005.
[17] Thirunavukkarasu, V. and Cheralathan, M., Thermal performance of solar parabolic dish concentrator with hetero-conical cavity receiver. Altern Energy Sources Mater Technol, vol. 787, Trans Tech Publications; 2015, p. 197e201. doi:10.4028/www.scientific.net/AMM.787.197.
[19] Qiu, K., Yan, L., Ni, M., Wang, C., Xiao, G., Luo, Z. and et al., Simulation and experimental study of an air tube-cavity solar receiver. Energy Convers Manag 2015; 103:847-58.
https://doi.org/10.1016/j.enconman.2015.07.01.
[20] Borgnakke, C. and Sonntag, R.E., Fundamentals of thermodynamics, 7th Ed., John Wiley & Sons, Inc., 2018.
[21] Abbasian Arani, A.A., Sadripour, S. and Kermani, S., Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluids in a sinusoidal-wavy mini-channel with phase shift and variable wavelength, International Journal of Mechanical Sciences, Vol. 128-129, pp. 550-563, 2017.
[22] Sadripour, S., 3D numerical analysis of atmospheric-aerosol/carbon-black nanofluid flow within a solar air heater located in Shiraz, Iran, International Journal of Numerical Methods for Heat & Fluid Flow, https://doi.org/10.1108/HFF-04-2018-0169, 2018.
[23] Incropera, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, A.S., Fundamentals of heat and mass Transfer, 6th Ed., John Wiley & Sons, 2006.
[25] Khorasanizadeh, H., Mohammadi, K. and Mostafaeipour, A., Establishing a diffuse solar radiation model for determining the optimum tilt angle of solar surfaces in Tabass, Iran, Energy Conversion and Management, Vol. 78, pp. 805-814, 2014.
[26] ANSYS Inc, Ansys CFX-solver Theory Guide, 2009.
[27] Behzadmehr, A., Saffar-Avval, M. and Galanis, N., Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, International Journal of Heat Fluid Flow, Vol. 28, pp. 211-219, 2007.
[28] Hejazian, M., Moraveji, M.K. and Beheshti, A., Comparative study of Euler and mixture models for turbulent flow of Al2O3 nanofluid inside a horizontal tube, International Communications in Heat and Mass Transfer, Vol. 52 , pp. 152-158, 2014.
[29] Goktepe, S., Atalk, K. and Ertrk, H., Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube, International Journal of Thermal Science, Vol. 80, pp. 83-92, 2014.
[30] Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Taylor & Francis Group, 1980.
[31] Schiller, L. and Naumann, A., A drag coefficient correlation, Z. Ver. Dtsch. Ing., Vol. 77, pp. 318-320, 1935.
[32] Abbasian Arani, A.A., Sadripour, S. and Kermani, S., Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluids in a sinusoidal–wavy mini-channel with phase shift and variable wavelength, International Journal of Mechanical Sciences, Vol. 128–129, pp. 550-563, 2017.
[33] Sadripour, S., 3D Numerical Analysis of Atmospheric-Aerosol/Carbon-Black Nanofluid Flow within a Solar Air Heater Located in Shiraz, Iran, International Journal of Numerical Methods for Heat and Fluid Flow, Vol. 29, No. 4, pp. 1378–1402, 2019.
[34] Sadripour, S. and Chamkha, A.J., The Effect of Nanoparticle Morphology on Heat Transfer and Entropy Generation of Supported Nanofluids in a Heat Sink Solar Collector, Thermal Science and Engineering Progress, Vol. 9, pp. 266–280, 2019.
[35] Sadripour, S., Investigation of Flow Characteristics and Heat Transfer Enhancement of a Corrugated Duct using Nanofluid, Journal of Applied Mechanics and Technical Physics, Vol. 59, No. 6, pp. 1049–1057, 2018.
[36] Duffie, J.A. and Beckman, W.A., Solar Engineering of Thermal Processes, 3rd Ed., Wiley & Sons, New York, 2006.