[1] Rhodes, M.J., "Introduction to Particle Technology", John Wiley & Sons, 2008.
[2] Groenewold, H. and Tsotsas, E., "Drying in Fluidized Beds with Immersed Heating Elements", Chem. Eng. Sci., Vol. 62, pp. 481-502, 2007.
[3] Mujumdar, A.S., "Handbook of industrial drying", CRC press, 2014.
[4] Harichandan, A.B. and Shamim, T., "CFD Analysis of Bubble Hydrodynamics in a Fuel Reactor for a Hydrogen-Fueled Chemical Looping Combustion System", Energy. Convers. Manage., Vol. 86, pp. 1010-1022, 2014.
[5] Luo, S., Xiao, B., Hu, Z., Liu, S. and He, M., "Experimental Study on Combustion of Biomass Micron Fuel (BMF) in Cyclone Furnace", Energy. Convers. Manage., Vol. 51, pp. 2098-2102, 2010.
[6] Alavi, S.R. and Lay, E.N., "Industrial Challenges of HDPE Fluid Bed Drying in Different Grades. QUID: Investigación, Cienciay Tecnología, pp. 555-566, 2017.
[7] Han, Y.-L., Chyang, C.-S., Hsiao, W.-M. and Lo, K.-C., "Effect of Fines Hold-up in the Freeboard on Elutriation from a Fluidized Bed", J. Taiwan. Inst. Chem. Eng., Vol. 42, pp. 120-123, 2011.
[8] Chang, Y.-M., Chou, C.-M., Su, K.-T., Hung, C.-Y. and Wu, C.-H., "Elutriation Characteristics of Fine Particles from Bubbling Fluidized Bed Incineration for Sludge Cake Treatment", Waste. manage., Vol. 25, pp. 249-263, 2005.
[9] Altmeyer, S., Mathieu, V., Jullemier, S., Contal, P., Midoux, N., Rode, S. and et al., "Comparison of Different Models of Cyclone Prediction Performance for Various Operating Conditions Using a General Software", Chem. Eng. Process. Process Inten., Vol. 43, pp. 511-522, 2004.
[10] Van't Land, C., "Drying in the process industry", John Wiley & Sons, 2011.
[11] Winfield, D., Cross, M., Croft, N., Paddison, D. and Craig, I., "Performance Comparison of a Single and Triple Tangential Inlet Gas Separation Cyclone: A CFD Study", Powder. Technol., Vol. 235, pp. 520-531 2013.
[12] Misiulia, D., Elsayed, K. and Andersson, A.G., "Geometry optimization of a deswirler for cyclone separator in terms of pressure drop using CFD and artificial neural network", Sep. Purif. Technol., Vol. 185, pp. 10-23, 2017.
[13] Liu, F., Chen, J., Zhang, A., Wang, X. and Dong, T., "Performance and flow behavior of four identical parallel cyclones", Sep. Purif. Technol., Vol. 134, pp. 147-157, 2014.
[14] Rosin, P., Rammler, E. and Intelmann, W., "Grundlagen und grenzen der zyklonentstaubung. VDI Zeitschrift", Vol. 76, pp. 433-437, 1932.
[15] Barth, W., "Design and Layout of the Cyclone Separator on the Basis of New Investigations", Brenn Warme Kraft., Vol. 8, pp. 9, 1956.
[16] Dietz, P., "Collection Efficiency of Cyclone Separators", AIChE. J., Vol. 27, pp. 888-892, 1981.
[17] Mothes, H. and Löffler, F., "Prediction of Particle Removal in Cyclone Separators", Int Chem Eng., Vol. 28, pp. 231-240, 1988.
[18] Dirgo, J. and Leith, D., "Performance of Theoretically Optimised Cyclones", Filtr. Sep., Vol. 22, pp. 119-125, 1985.
[19] Leith, D., "The Collection Efficiency of Cyclone Type Particle Collectors-a New Theoretical Approach", AIChE Symp Ser., pp. 196-206, 1972.
[20] Song, C., Pei, B., Jiang, M., Wang, B., Xu, D. and Chen, Y., "Numerical Analysis of Forces Exerted on Particles in Cyclone Separators", Powder Technol., vol. 294, pp. 437-448, 2016.
[21] Ter Linden, A., "Investigations into Cyclone Dust Collectors, Process", Inst. Mech. Eng., Vol. 160, pp. 233-251, 1949.
[22] Hoekstra, A.J., "Gas Flow Field and Collection Efficiency of Cyclone Separators", 2000.
[23] Smith, J., "An Experimental Study of the Vortex in the Cyclone Separator", ASME J Basic Eng., Vol. 84, pp. 602-608, 1962.
[24] Solero, G. and Coghe, A., "Experimental Fluid Dynamic Characterization of a Cyclone Chamber", Exp. Therm. Fluid. Sci., Vol. 27, pp. 87-96, 2002.
[25] Syred, N., "A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems", Progress Energy. Combust. Sci., Vol. 32, pp. 93-161, 2006.
[26] Cortes, C. and Gil, A., "Modeling the Gas and Particle Flow Inside Cyclone Separators", Progress Energy. Comb. Sci., Vol. 33, pp. 409-452, 2007.
[27] Su, Y. and Mao, Y., "Experimental Study on the Gas–Solid Suspension Flow in a Square Cyclone Separator", Chem. Eng. J., Vol. 121, pp. 51-58, 2006.
[28] Chan, C., Seville, J., Fan, X., Dewil, R. and Baeyens, J., "CFB Cyclones: Pressure Drop and Particle Motion, Viewed by Positron Emission Particle Tracking", 2008.
[29] Li, S., Yang, H., Zhang, H., Yang, S., Lu, J. and Yue, G., "Measurements of Solid Concentration and Particle Velocity Distributions Near the Wall of a Cyclone", Chem. Eng. J., Vol. 150, pp. 168-173, 2009.
[30] Cocco, R., Karri, S.R. and Knowlton, T., "Introduction to fluidization", Chem. Eng. Progress, Vol. 110, pp. 21-29, 2014.
[31] Drake, J.B., "Hydrodynamic Characterization of 3D Fluidized Beds Using Noninvasive Techniques", Iowa State University, 2011.
[32] Lay, E.N., Razavi Alavi, S.A., Afzali, K. and Alizadeh Makhmali, A.H., "Investigation of Effective Operational Parameters on an Industrial Double-Cyclone of HDPE Fluidized Bed Drying", The 9th Int. Chem. Eng. Congress Exhibition, IRAN, 2015.
[33] Safikhani, H. and Mehrabian, P., "Numerical Study of Flow Field in New Cyclone Separators", Adv. Powder. Technol., Vol. 27, pp. 379-387, 2016.
[34] Lee, J.W., Yang, H.J. and Lee, D.Y., "Effect of the Cylinder Shape of a Long-Coned Cyclone on the Stable Flow-Field Establishment", Powder Technol., Vol. 165, pp. 30-38, 2006.
[35] Gimbun, J., Chuah, T., Fakhru’l-Razi, A. and Choong, T.S., "The Influence of Temperature and Inlet Velocity on Cyclone Pressure Drop: a CFD Study", Chem. Eng. Process. Process Inten., Vol. 44, pp. 7-12, 2005.
[36] Su, M., Zhao, H. and Ma, J., "Computational Fluid Dynamics Simulation for Chemical Looping Combustion of Coal in a Dual Circulation Fluidized Bed", Energy. Convers. Manage., Vol. 105, pp. 1-12, 2015.
[37] A. Kasaeian, A.R. Mahmoudi, F.R. Astaraei, A. Hejab, "3D Simulation of Solar Chimney Power Plant Considering Turbine Blades", Energy. Convers. Manage., Vol. 147, pp. 55-65, 2017.
[38] A. Fluent. 12.0 Theory Guide. Ansys Inc. 5, 2009.
[39] A. Fluent. Fluent theory guide. SAS IP, Inc, Canonsburg, PA., 2010.
[40] Ghasemian, M., Ashrafi, Z.N. and Sedaghat, A., "A Review on Computational Fluid Dynamic Simulation Techniques for Darrieus Vertical Axis Wind Turbines", Energy. Convers. Manage., Vol. 149, pp. 87-100, 2017.
[41] Jayaraju, S.T., "Study of the Air Flow and Aerosol Transport in the Human Upper Airways Using LES and DES Methodologies", Mech. Eng., pp. 196, 2009.
[42] Stairmand, C.J., "The Design and Performance of Cyclone Separators", Trans Inst Chem Engrs., Vol. 29, pp. 356-362, 1951.
[43] Shephered, C. and Lapple, C., "Flow Pattern and Pressure Drop in Cyclone dust Collectors", Ind. Eng. Chem., Vol. 31, pp. 972-984, 1939.
[44] A. Ogawa, "Separation of Particles from air and Gases", 1984.
[45] Ficici, F., Ari, V. and Kapsiz, M., "The Effects of Vortex Finder on the Pressure Drop in Cyclone Separators", Int. J. Physical. Sci., Vol. 5, pp. 804-813, 2010.
[46] Bernardo, S., Mori, M., Peres, A. and Dionisio, R., "3-D Computational Fluid Dynamics for Gas and Gas-Particle Flows in a Cyclone with Different Inlet Section Angles", Powder Technol., Vol. 162, pp. 190-200, 2006.
[47] Chuah, T., Gimbun, J. and Choong, T.S., "A CFD Study of the Effect of Cone Dimensions on Sampling Aerocyclones Performance and Hydrodynamics", Powder Technol., Vol. 162, pp. 126-132, 2006.
[48] Dyakowski, T. and Williams, R., "Modelling Turbulent Flow within a Small-Diameter Hydrocyclone", Chem. Eng. Sci., Vol. 48, pp. 1143-1152, 1993.
[49] Griffiths, W. and Boysan, F., "Computational Fluid Dynamics (CFD) and Empirical Modelling of the Performance of a Number of Cyclone Samplers", J. Aerosol Sci., Vol. 27, pp. 281-304, 1996.
[50] Peng, W., Hoffmann, A., Boot, P., Udding, A., Dries, H., Ekker, A. and et al., "Flow Pattern in Reverse-Flow Centrifugal Separators", Powder Technol., Vol. 127, pp. 212-222, 2002.
[51] Xiang, R. and Lee, K., "Numerical Study of Flow Field in Cyclones of Different Height", Chem. Eng. Process. Process Inten., Vol. 44, pp. 877-883, 2005.
[52] Zhou, L. and Soo, S., "Gas—Solid Flow and Collection of Solids in a Cyclone Separator", Powder Technol., Vol. 63, pp. 45-53, 1990.
[53] Houben, J., Weiss, C., Brunnmair, E. and Pirker, S., "CFD Simulations of Pressure Drop and Velocity Field in a Cyclone Separator with Central Vortex Stabilization Rod", J. Appl. Fluid. Mech., Vol. 9, 2016.
[54] Huang, A.-N., Ito, K., Fukasawa, T., Yoshida, H., Kuo, H.-P. and Fukui, K., "Classification Performance Analysis of a Novel Cyclone with a Slit on the Conical part by CFD Simulation", Sep. Purif. Technol., Vol. 190, pp. 25-32, 2018.
[55] Thompson, J.F., Warsi, Z.U. and Mastin, C.W., "Numerical Grid Generation: Foundations and Applications", North-holland Amsterdam, 1985.
[56] Ansys. I., CFD. ICEM CFD theory guide, Ansys inc. 2015.
[57] Zhao, B., Su, Y. and Zhang, J., "Simulation of Gas Flow Pattern and Separation Efficiency in Cyclone with Conventional Single and Spiral Double Inlet Configuration", Chem. Eng. Research. Design., Vol. 84, pp. 1158-1165, 2006.
[58] Jiao, J., Zheng, Y. Sun, G. and Wang, J., "Study of the Separation Efficiency and the Flow Field of a Dynamic Cyclone", Sep. Purif. Technol., Vol. 49, pp. 157-166, 2006.
[59] Orszag, S.A., "Renormalisation Group Modelling and Turbulence Simulations. Near-wall Turbulent Flows", 1993.
[60] Choudhury, D., "Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Incorporated, 1993.
[61] Morsi, S. and Alexander, A., "An Investigation of Particle Trajectories in Two-Phase Flow Systems", J. Fluid. Mech., Vol. 55, pp. 193-208, 1972.
[62] Curtis, J.S. and Van Wachem, B., "Modeling Particle‐Laden Flows: A research outlook", AIChE. J., Vol. 50, pp. 2638-2645, 2004.
[63] Ferziger, J.H. and Peric, M., "Computational Methods for Fluid Dynamics", Springer Science & Business Media, 2012.
[64] Wang, B., Xu, D., Chu, K. and Yu, A., "Numerical Study of Gas–Solid Flow in a Cyclone Separator", Appl. Math. Modelling, Vol. 30, pp. 1326-1342, 2006.
[65] McCabe, W.L., Smith, J.C. and Harriott, P., "Unit Operations of Chemical Engineering", McGraw-Hill, New York, 1993.
[66] Sgrott, O.L., Noriler, D., Wiggers, V.R. and Meier, H.F., "Cyclone Optimization by COMPLEX Method and CFD Simulation", Powder Technol., Vol. 277, pp. 11-21, 2015.
[67] Li, Q., Xu, W., Wang, J. and Jin, Y., "Performance Evaluation of a New Cyclone Separator–Part I Experimental Results", Sep. Purif. Technol., Vol. 141, pp. 53-58, 2015.
[68] Ghodrat, M., Kuang, S., Yu, A., Vince, A., Barnett, G. and Barnett, P., "Computational Study of the Multiphase Flow and Performance of Hydrocyclones: Effects of Cyclone Size and Spigot Diameter", Ind. Eng. Chem. Research., Vol. 52, pp. 16019-16031, 2013.
[69] Safikhani, H., Hajiloo, A. and Ranjbar, M., "Modeling and Multi-Objective Optimization of Cyclone Separators Using CFD and Genetic Algorithms", Comp. Chem. Eng., Vol. 35, pp. 1064-1071, 2011.
[70] Elsayed, K. and Lacor, C., "CFD Modeling and Multi-Objective Optimization of Cyclone Geometry Using Desirability Function, Artificial Neural Networks and Genetic Algorithms", Appl. Math. Modelling., Vol. 37, pp. 5680-5704, 2013.