[1] بنایی، محمدرضا، اژدرفاقیبناب، حسین، «ارائۀ یک مبدل غیر ایزولۀDC-DC با ضریب افزایندگی بالا برای کاربرد در انرژی خورشیدی» نشریه مهندسی و مدیریت انرژی، دوره هفتم، شماره اول، صفحه 14ـ29، 1396.
[2] Demirbas, M. F., "Thermal Energy Storage and Phase Change Materials: an Overview", Energy Sources, Part B Econ. Planning, Policy, Vol. 1, No. 1, pp. 85–95, 2006.
[3] Elgafy, A. and Lafdi, K., "Effect of Carbon Nanofiber Additives on Thermal Behavior of Phase Change Materials", Carbon N. Y., Vol. 43, No. 15, pp. 3067–3074, 2005.
[4] Yu, W. and Xie, H., "A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications", J. Nanomater., Vol. 2012, p. 1, 2012.
[5] Halté, V., Bigot, J-Y., Palpant, B., Broyer, M., Prével, B. and Pérez, A., "Size Dependence of the Energy Relaxation in Silver Nanoparticles Embedded in Dielectric Matrices", Appl. Phys. Lett., Vol. 75, No. 24, pp. 3799–3801, 1999.
[6] Narayanan S. S. and et al., "Development of sunlight-driven eutectic phase change material nanocomposite for applications in solar water heating", Resour. Technol., Vol. 3, No. 3, pp. 272–279, 2017.
[7] Tasnim, S. H., Hossain, R., Mahmud, S. and Dutta, A. "Convection effect on the melting process of nano-PCM inside porous enclosure", Int. J. Heat Mass Transf., Vol. 85, pp. 206–220, Jun. 2015.
[8] Wang, J. Xie, H. and Xin, Z. "Thermal properties of paraffin based composites containing multi-walled carbon nanotubes", Thermochim. Acta, Vol. 488, No. 1–2, pp. 39–42, 2009.
[9] Colla, L., Fedele, L., Mancin, S., Danza, L. and Manca, O., "Nano-PCMs for enhanced energy storage and passive cooling applications", Appl. Therm. Eng., Vol. 110, pp. 584–589, 2017.
[10] Wu, S., Wang, H., Xiao, S. and Zhu, D., "Numerical simulation on thermal energy storage behavior of Cu/paraffin nanofluids PCMs", Procedia Eng., Vol. 31, pp. 240–244, 2012.
[11] Li, M., "A nano-graphite / paraffin phase change material with high thermal conductivity", Appl. Energy, Vol. 106, pp. 25–30, 2013.
[12] نظیفیفرد، محمد، عباسیان آرانی، علیاکبر، کلباسی، محمدحسین، «بررسی فرایند ذوب و انجماد مادۀ تغییر فاز دهندۀ پارافینواکس در یک هندسۀ کروی»، سومین کنفرانس انتقال حرارت و جرم ایران، بابل، 1396.
[13] Li, T., Lee, M., Wang, J.-H. R. and Kang, Y. T., "Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application", Int. J. Heat Mass Transf., Vol. 75, pp. 1–11, 2014.
[14] Warzoha, R. J., Weigand, R. M. and Fleischer, A. S., "Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers", Appl. Energy, Vol. 137, pp. 716–725, 2015.
[15] Yang, Y., Luo, J., Song, G., Liu, Y. and Tang, G., "The experimental exploration of nano-Si3N4/paraffin on thermal behavior of phase change materials", Thermochim. Acta, Vol. 597, pp. 101–106, 2014.
[16] Motahar, S., Nikkam, N., Alemrajabi, A. A., Khodabandeh, R., Toprak, M. S. and Muhammed, M., "Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles", Int. Commun. Heat Mass Transf., Vol. 59, pp. 68–74, 2014.
[17] Colla, L., Fedele, L., Mancin, S., Danza, L. and Manca, O., "Nano-PCMs for enhanced energy storage and passive cooling applications", Appl. Therm. Eng., Vol. 110, pp. 584–589, 2017.
[18] OBITAYO, O. A., "Simulation and analysis of phase change materials for building temperature control", Univ. Strat. Glas. United Kingdom, 2011.
[19] Sharma, A., Tyagi, V. V., Chen, C. R. and Buddhi, D., "Review on thermal energy storage with phase change materials and applications", Renew. Sustain. energy Rev., Vol. 13, No. 2, pp. 318–345, 2009.
[20] Kousksou, T., El Rhafiki, T., Mahdaoui, M., Bruel, P. and Zeraouli, Y., "Crystallization of supercooled PCMs inside emulsions: DSC applications", Sol. Energy Mater. Sol. Cells, Vol. 107, pp. 28–36, 2012.
[21] Watson, E. S., O’Neill, M. J., Justin, J. and Brenner, N., "A Differential Scanning Calorimeter for Quantitative Differential Thermal Analysis", Anal. Chem., Vol. 36, No. 7, pp. 1233–1238, Jun. 1964.
[22] Lin S. C. and Al-Kayiem, H. H., "Evaluation of copper nanoparticles–Paraffin wax compositions for solar thermal energy storage", Sol. Energy, Vol. 132, pp. 267–278, 2016.
[23] Nurten, Ş., Fois, M. and Paksoy, H., "Solar Energy Materials & Solar Cells Improving thermal conductivity phase change materials — A study of paraf fi n nanomagnetite composites", Vol. 137, pp. 61–67, 2015.
[24] Yu, Z.-T. and et al., "Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes", Carbon N. Y., Vol. 53, pp. 277–285, 2013.
[25] سازمان ملی استاندارد ایران، استاندارد شمارۀ 1-7186، گرماسنج روبشی تفاضلی، ایران، چاپ اول، 1394، صفحۀ 1ـ۴۷.
[26] Şahan, N., Fois, M. and Paksoy, H., "Improving thermal conductivity phase change materials—A study of paraffin nanomagnetite composites", Sol. Energy Mater. Sol. Cells, Vol. 137, pp. 61–67, 2015.
[27] Shaikh, S., Lafdi, K. and Hallinan, K., "Carbon nanoadditives to enhance latent energy storage of phase change materials", J. Appl. Phys., Vol. 103, No. 9, p. 94302, 2008.
[28] Li, M., "A nano-graphite/paraffin phase change material with high thermal conductivity", Appl. Energy, Vol. 106, pp. 25–30, 2013.
[29] Nourani, M., Hamdami, N., Keramat, J., Moheb, A. and Shahedi, M., "Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity", Renew. Energy, Vol. 88, pp. 474–482, 2016.
[30] Jiang, X., Luo, R., Peng, F., Fang, Y., Akiyama, T. and Wang, S., "Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3", Appl. Energy, Vol. 137, pp. 731–737, 2015.
[31] Oya, T., Nomura, T., Tsubota, M., Okinaka, N. and Akiyama, T., "Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles", Appl. Therm. Eng., Vol. 61, No. 2, pp. 825–828, 2013.
[32] Shi, J.-N. and et al., "Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives", Carbon N. Y., Vol. 51, pp. 365–372, 2013.