کنترل توزیع‌شده و مداوم ولتاژ و فرکانس سیستم چندماشینه با قابلیت کنترل هم‌زمان توان اکتیو و راکتیو با بهره‌گیری از باتری ذخیره‌ساز انرژی

نویسندگان

دانشگاه رازی

چکیده

در این مقاله، یک روش جدید برای کنترل هم‌زمان توان اکتیو و راکتیو در سیستم چندماشینه با بهره‌گیری از ذخیره‌ساز انرژی و ساختار کنترلی توزیع‌شده در کنترل فرکانس و تنظیم ولتاژ معرفی شده است. در روش پیشنهادی، هریک از واحد‌های تولیدی به یک واحد ذخیره‌سازی با سیستم کنترلی مجزا مجهز شده‌اند که هر واحد ذخیره‌ساز شامل دو حلقۀ کنترلی مجزاست. حلقۀ اول برای کنترل توان اکتیو و حلقۀ دوم برای کنترل توان راکتیو طراحی شده است. همچنین برای کنترل فرکانس و ولتاژ دو مدار کنترلی مجزا نیز در مبدل‌ها در نظر گرفته شده است. برای بررسی عملکرد ساختار کنترلی پیشنهادی و نمایش پایداری سیستم نتایج شبیه‌سازی برای حالت‌های تعادل و عدم تعادل شبکه بررسی ‌شده‌ است. برای استراتژی کنترلی ارائه‌شده تمام پارامترهای کنترل‌کننده‌ها هم‌زمان با استفاده از یک الگوریتم بهینه‌سازی غیرخطی ترکیبی رقابت استعماری و ژنتیک بهینه شده است. نتایج به‌دست‌آمده از شبیه‌سازی بیانگر کارایی ساختار کنترلی پیشنهادی در بهره‌گیری از باتری ذخیره‌ساز انرژی برای کنترل همزمان توان اکتیو و راکتیو در یک سیستم مبدل انرژی بادی است و اثربخشی این استراتژی را در شرایط تعادل و عدم تعادل شبکه نشان می‌دهد.

کلیدواژه‌ها


[1] Xia, H., Li, Q., Xu, R., Chen, T., Wang, J., Hassan, M.A.S. and Chen, M., "Distributed Control Method for EcoNomic Dispatch in Islanded Microgrids with Renewable Energy Sources", IEEE Access, Vol. 6, pp. 21802–21811, 2018. [2] براتی، حسن، امین‌زاده،‌ هادی، «کنترل توان و فرکانس بار مبتنی بر روش کنترلی شیب افتی بهبودیافته در سیستم‌ ترکیبی توربین بادی، فتوولتائیک و پیل سوختی در ریزشبکه‌‌های مستقل»، نشریه مهندسی و مدیریت انرژی، دورۀ 6، شمارۀ 1، صفحۀ 28ـ39، 2016. [3] El-Fergany, A.A. and El-Hameed, M.A. "Efficient Frequency Controllers for Autonomous Two-Area Hybrid Microgrid System Using Social-Spider Optimiser", IET Generation, Transmission & Distribution, Vol. 11, No. 3, pp.637-648, 2017. [4] Nosrati, K., Mansouri, H.R. and Saboori, H.,"Fractional-order PID Controller Design of Frequency Deviation in a Hybrid Renewable Energy Generation and Storage System," CIRED - Open Access Proc. J., Vol. 20, No. 1, pp. 1148–1152, 2017. [5] Tahir, K., Belfedal, C., Allaoui, T., Denai, M. and Doumi, M.H., "A New Sliding Mode Control Strategy for Variable-Speed Wind Turbine Power Maximization", Int. Trans. Electr. Energy Syst., Vol. 28, No. 4, pp. e2513, 2018. [6] Hemmati, R., Azizi, N., Shafie-Khah, M. and Catalão, J.P.,"Decentralized Frequency-Voltage Control and Stability Enhancement of Standalone Wind Turbine-Load-Battery", Int. J. Electr. Power Energy Syst., Vol. 102, pp. 1–10, 2018. [7] Roy, K., Mandal, K.K., Mandal, A.C. and Patra, S.N., "Analysis of Energy Management In Micro Grid – A Hybrid BFOA and ANN Approach", Renew. Sustain. Energy Rev., Vol. 82, pp. 4296–4308, 2018. [8] Bektache, A., and Boukhezzar, B., "Nonlinear Predictive Control of a DFIG-Based Wind Turbine for Power Capture Optimization", Int. J. Electr. Power Energy Syst., Vol. 101, pp. 92–102, 2018. [9] Tohidi, S. and Behnam, M.I., "A Comprehensive Review of Low Voltage Ride through of Doubly Fed Induction Wind Generators", Renew. Sustain. Energy Rev., Vol. 57, pp. 412–419, 2016. [10] Mishra, Y., Mishra, S., Li, F., Dong, Z.Y. and Bansal, R.C.,"Small-Signal Stability Analysis of a DFIG-Based Wind Power System Under Different Modes of Operation," IEEE Trans. Energy Convers., Vol. 24, No. 4, pp. 972–982, 2009. [11] Rahimi, M.,"Drive Train Dynamics Assessment and Speed Controller Design in Variable Speed Wind Turbines", Renew. Energy, Vol. 89, pp. 716–729, 2016. [12] Yan, X., Venkataramanan, G., Wang, Y., Dong, Q. and Zhang, B.,"Grid-Fault Tolerant Operation of a DFIG Wind Turbine Generator Using a Passive Resistance Network", IEEE Trans. Power Electron., Vol. 26, No. 10, pp. 2896–2905, 2010. [13] Mohammadi, J., Afsharnia, S., Vaez-Zadeh, S. and Farhangi, S.,"Improved Fault Ride through Strategy for Doubly Fed Induction Generator Based Wind Turbines Under both Symmetrical and Asymmetrical Grid Faults", IET Renew. Power Gener, Vol. 10, No. 8, pp. 1114–1122, 2016. [14] Tohidi, S., Oraee, H., Zolghadri, M.R., Shao, S. and Tavner, P., "Analysis and Enhancement of Low-Voltage Ride-Through Capability of Brushless Doubly Fed Induction Generator", IEEE Trans. Ind. Electron., Vol. 60, No. 3, pp. 1146–1155, 2013. [15] Vidal, J., Abad, G., Arza, J. and Aurtenechea, S.,"Single-Phase DC Crowbar Topologies for Low Voltage Ride Through Fulfillment of High-Power Doubly Fed Induction Generator-Based Wind Turbines", IEEE Trans. Energy Convers., Vol. 28, No. 3, pp. 768–781, 2013. [16] Fazeli, M., Asher, G.M., Klumpner, C., Yao, L. and Bazargan, M., "Novel Integration of Wind Generator-Energy Storage Systems within Microgrids", IEEE Trans. Smart Grid, Vol. 3, No. 2, pp. 728–737, 2012. [17] Wang, S., Hu, J., and Yuan, X., "Virtual SynchroNous Control for Grid-Connected DFIG-Based Wind Turbines", IEEE J. Emerg. Sel. Top. Power Electron., Vol. 3, No. 4, pp. 932–944, 2015. [18] Hemmati, R. and Azizi, N., "Optimal Control Strategy on Battery Storage Systems for Decoupled Active-Reactive Power Control and Damping oscillations", J. Energy Storage, Vol. 13, pp. 24–34, 2017. [19] Hemmati, R. and Azizi, N., "Nonlinear Modeling and Simulation of Battery Energy Storage Systems Incorporating Multiband Stabilizers Tuned by Meta-Heuristic Algorithm", Simul. Model. Pract. Theory, Vol. 77, pp. 212–227, 2017. [20] Liao, K., He, Z., Wang, Y. and Yang, J., "An Input-Output Linearization Algorithm-Based Inter-Area Damping Control Strategy for DFIG", IEEJ Trans. Electr. Electron. Eng., Vol. 13, No. 1, pp. 32–37, 2018. [21] Moghadam, F.K., Ebrahimi, S., Oraee, A. and Velni, J.M., "Vector Control Optimization of DFIGs under Unbalanced Conditions", Int. Trans. Electr. Energy Syst., p. e2583, 2018. [22] Justo, J.J., Mwasilu, F. and Jung, J.W.,"Doubly-fed Induction Generator based wind Turbines: A Comprehensive Review of Fault Ride-Through Strategies", Renew. Sustain. Energy Rev., Vol. 45, pp. 447–467, 2015. [23] Prajapat, G.P., Senroy, N. and Kar, I.N., "Wind Turbine Structural Modeling Consideration for Dynamic Studies of DFIG Based System", IEEE Trans. Sustain. Energy, Vol. 8, No. 4, pp. 1463–1472, 2017. [24] Sardouie, S.H., Albera, L., Shamsollahi, M.B. and Merlet, I.,"An Efficient Jacobi-Like Deflationary ICA Algorithm: Application to EEG DeNoising", IEEE Signal Process. Lett., Vol. 22, No. 8, pp. 1198–1202, 2015. [25] ابراهیمی، عادل، احمدیان، محمد، شیوایی، مجتبی، قبادی، مهدی، «کنترل زمان حقیقی ولتاژ و توان راکتیو در شبکه‌های توزیع متصل به تولید پراکنده با استفاده از الگوریتم رقابت استعماری و تئوری فازی»، نشریه مهندسی و مدیریت انرژی، دورۀ 1، شمارۀ 1، صفحۀ 19ـ27، 2011.