[1] Naik, M. T., Janardana, G. R., & Sundar, L. S., "Experimental Investigation of Heat Transfer and Friction Factor with Water–propylene glycol based CuO Nanofluid in a Tube with Twisted Tape inserts", International Communications in Heat and Mass Transfer, Vol. 46, pp.13-21, 2013. [2] Naik, M. T., Fahad, S. S., Sundar, L. S., & Singh, M. K., "Comparative Study on Thermal Performance of Twisted Tape and Wire Coil inserts in Turbulent Flow using CuO/water Nanofluid", Experimental Thermal and Fluid Science, Vol. 57, pp. 65-76, 2014. [3] Azmi, W. H., Sharma, K. V., Mamat, R., & Anuar, S., "Turbulent Forced Convection Heat Transfer of Nanofluids with Twisted Tape insert in a Plain Tube", Energy procedia, Vol. 52, pp. 296-307, 2014. [4] Prasad, P. D., Gupta, A. V. S. S. K. S., & Deepak, K., "Investigation of Trapezoidal-Cut Twisted Tape Insert in a Double Pipe U-Tube Heat Exchanger using Al2O3/Water Nanofluid", Procedia Materials Science, Vol. 10, pp. 50-63, 2015. [5] Khoshvaght-Aliabadi, M., & Eskandari, M., "Influence of Twist Length Variations on Thermal–Hydraulic Specifications of Twisted-Tape inserts in Presence of Cu–water Nanofluid", Experimental Thermal and Fluid Science, Vol. 61, pp. 230-240, 2015. [6] Khoshvaght-Aliabadi, M., Shabanpour, H., Alizadeh, A., & Sartipzadeh, O., "Experimental Assessment of Different Inserts inside Straight Tubes: Nanofluid as Working Media." Chemical Engineering and Processing: Process Intensification, Vol. 97, pp. 1-11, 2015. [7] Azmi, W. H., Sharma, K. V., Sarma, P. K., Mamat, R., Anuar, S., & Sundar, L. S., "Numerical Validation of Experimental Heat Transfer Coefficient with SiO2 Nanofluid Flowing in a Tube with Twisted Tape Inserts", Applied Thermal Engineering, Vol. 73, No. 1, pp. 296-306, 2014. [8] Eiamsa-ard, S., & Kiatkittipong, K., "Heat Transfer Enhancement by Multiple Twisted Tape Inserts and TiO2/Water Nanofluid", Applied Thermal Engineering, Vol. 70, No. 1, pp. 896-924, 2014. [9] Eiamsa-ard, S., Kiatkittipong, K., & Jedsadaratanachai, W., "Heat Transfer Enhancement of TiO2/Water Nanofluid in a Heat Exchanger Tube Equipped with Overlapped Dual Twisted-Tapes", Engineering Science and Technology, an International Journal, Vol. 18, No. 3, pp. 336-350, 2015. [10] Behzadmehr, A., Saffar-Avval, M., & Galanis, N., "Prediction of Turbulent Forced Convection of a Nanofluid in a Tube with Uniform Heat Flux using a Two Phase Approach", International Journal of Heat and Fluid Flow, Vol. 28, No. 2, pp. 211-219, 2007. [11] He, Y., Men, Y., Zhao, Y., Lu, H., & Ding, Y., "Numerical Investigation into the Convective Heat Transfer of TiO2 Nanofluids Flowing through a Straight Tube under the Laminar Flow Conditions", Applied Thermal Engineering, Vol. 29, No. 10, pp. 1965-1972, 2009. [12] Fard, M. H., Esfahany, M. N., & Talaie, M. R., "Numerical Study of Convective Heat Transfer of Nanofluids in a Circular Tube Two-phase Model versus Single-phase Model." International Communications in Heat and Mass Transfer, Vol. 37, No. 1, pp. 91-97, 2010. [13] Patankar, S. V., "Numerical Heat Transfer and Fluid Flow", John Wiley and Sons, 1984. [14] Van Doormaal, J. P., & Raithby, G. D., "Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows", Numerical heat transfer, Vol. 7, No. 2, pp. 147-163, 1984. [15] Ounis, H., Ahmadi, G., & McLaughlin, J. B., "Brownian Diffusion of Submicrometer Particles in the Viscous Sublayer", Journal of Colloid and Interface Science, Vol. 143, No.1, pp. 266-277, 1991. [16] Saffman, P. G. T., "The Lift on a Small Sphere in a Slow Shear Flow", Journal of fluid mechanics, Vol. 22, No.2, pp. 385-400, 1965. [17] Talbot, L., Cheng, R. K., Schefer, R. W., & Willis, D. R.,"Thermophoresis of Particles in a Heated Boundary Layer", Journal of Fluid Mechanics, Vol. 101, No. 04, pp. 737-758, 1980. [18] Ranz, W. E., "Evaporation from Drops: Part II", Chem. Engng. Prog. Vol. 48, pp. 173-180, 1952. [19] Bejan, A., "Convective Heat Transfer", Third ed. New Jersey: John Wiley & Sons, Inc., 2004. [20] Ansys Team, "Fluent Ansys. 12.0 User’s guide", User Inputs for Porous Media 6, 2009. [21] Nguyen, V. B., Nguyen, Q. B., Zhang, Y. W., Lim, C. Y. H., & Khoo, B. C., "Effect of Particle Size on Erosion Characteristics", Wear, Vol. 348, pp. 126-137, 2016. [22] Sundar, L. S., & Sharma, K. V., "Turbulent Heat Transfer [23] and Friction Factor of Al2O3 Nanofluid in Circular Tube with Twisted Tape Inserts", International Journal of Heat and Mass Transfer, Vol. 53, No. 7, pp. 1409-1416, 2010. [24] کاظمی، خدیجه، شیخزاده، قنبرعلی، نظیفیفرد، محمد، مداحیان، رضا، شبیهسازی عددی دوفازی نانوسیال در یک لوله با نوار چرخان: انتخاب مدل آشفتگی مناسب، هفدهمین کنفرانس دینامیک شارهها FD2017، شاهرود، دانشگاه صنعتی شاهرود، 5-7 شهریور 1396. [25] Kumar, N. R., Bhramara, P., Addis, B. M., Sundar, L. S., Singh, M. K., & Sousa, A. C., "Experimental Heat Transfer, Friction Factor and Effectiveness Analysis of Fe3O4 Nanofluid Flow in a Horizontal Plain Tube with Return Bend and Wire Coil Inserts", International Journal of Heat and Mass Transfer, Vol. 109, pp. 440-453, 2017. [26] Kheradmand, S., Esmailian, M., & Fatahy, A., "Numerical Simulation of the Combination Effect of External Magnetic Field and Rotating Workpiece on Abrasive Flow Finishing", Journal of Mechanical Science and Technology, Vol. 31, No. 4, pp. 1835-1841, 2017. [27] Promvonge, P., "Thermal Augmentation in Circular Tube with Twisted Tape and Wire Coil Turbulators", Energy Conversion and Management, Vol. 49, No.11, pp. 2949-2955, 2008. [28] Wongcharee, K., & Eiamsa-Ard, S., "Enhancement of Heat Transfer using CuO/Water Nanofluid and Twisted Tape with Alternate Axis", International Communications in Heat and Mass Transfer, Vol. 38, No .6, pp. 742-748, 2011.