[1] Yamaguchi, M., "III–V Compound Multi-Junction Solar Cells: Present and Future," Solar Energy Materials and Solar Cells, Vol. 75, No. 1, pp. 261-269, 2003.
[2] Takamoto, T., Kaneiwa, M., Imaizumi, M., Yamaguchi, M., "InGaP/GaAs‐Based Multijunction Solar Cells," Progress in Photovoltaics: Research and Applications, Vol. 13, No. 6, pp. 495-511, 2005.
[3] Takamoto, T., Agui, T., Ikeda, E., Kurita, H., "High-Efficiency InGaP/In 0.01 Ga 0.99 as Tandem Solar Cells Lattice-Matched to Ge Substrates", Solar Energy Materials and Solar Cells, Vol. 66, No. 1, pp. 511-516, 2001.
[4] Takamoto, T., et al. "Structural Optimization for Single Junction InGaP Solar Cells", Solar Energy Materials and Solar Cells, Vol. 35, pp. 25-31, 1994.
[5] N. Dharmarasu and et al, "Effects of Proton Irradiation on n+ p InGaP Solar Cells", Journal of Applied Physics, Vol. 91, pp. 3306-3311, 2002.
[6] Sugaya, Takeyoshi, et al. "Ultra-High Stacks of InGaAs/GaAs Quantum Dots for High Efficiency Solar Cells", Energy & Environmental Science, Vol. 5, No. 3, pp. 6233-6237, 2012.
[7] Sugaya, T., et al. "Tunnel Current Through a Miniband in InGaAs Quantum Dot Superlattice Solar Cells", Solar Energy Materials and Solar Cells, Vol. 95, No. 10, pp. 2920-2923, 2011.
[8] Nishioka, Kensuke, et al. "Evaluation of InGaP/InGaAs/Ge Triple-Junction Solar Cell and Optimization of Solar Cell's Structure Focusing on Series Resistance for High-Efficiency Concentrator Photovoltaic Systems", Solar Energy Materials and Solar Cells, Vol. 90, No. 9, pp. 1308-1321, 2006.
[9] Takamoto, Tatsuya, et al. "Two-Terminal Monolithic In0. 5Ga0. 5P/GaAs Tandem Solar Cells with a High Conversion Efficiency of Over 30%", Japanese journal of Applied Physics, vol. 36, no. 10, pp. 6215, 1997.
[10] Bett, A. W., Dimroth, F., Stollwerck, G., Sulima, O. V., "III-V Compounds for Solar Cell Applications", Applied Physics, Vol. 69, No. 2, pp. 119-129, 1999.
[11] Yamaguchi, Masafumi, et al. "Novel Materials for High-Efficiency III–V Multi-Junction Solar Cells", Solar Energy, Vol. 82, No. 2, pp. 173-180, 2008.
[12] Yang, M. D., et al. "Improvement of Conversion Efficiency for Multi-Junction Solar Cells by Incorporation of Au Nanoclusters", Optics Express, Vol. 16, No. 20, pp. 15754-15758, 2008.
[13] Rockstuhl, C., et al. "Local Versus Global Absorption in Thin-film Solar Cells with Randomly Textured Surfaces", Applied physics letters, Vol. 93, No. 6, pp. 061105, 2008.
[14] Tao, M., Zhou, W., Yang, H., Chen, L., "Surface Texturing by Solution Deposition for Omnidirectional Antireflection", Applied Physics Letters, Vol. 91, No. 8, pp. 081118, 2007.
[15] Nakayama, K., Tanabe, K., Atwater, H. A., "Plasmonic Nanoparticle Enhanced Light Absorption in GaAs Solar Cells", Applied Physics Letters, Vol. 93, No. 12, PP. 121904, 2008.
[16] Matheu, P., et al. "Metal and Dielectric Nanoparticle Scattering for Improved Optical Absorption in Photovoltaic Devices", Applied Physics Letters, Vol. 93, No. 11, pp. 113108, 2008.
[17] Huang, M. J., Yang, C. R., Chiou, Y. C., Lee, R. T., "Fabrication of Nanoporous Antireflection Surfaces on Silicon", Solar Energy Materials and Solar Cells, Vol. 92, No. 11, pp. 1352-1357, 2008.
[18] Yerokhov, V. Y., et al. "Cost-Effective Methods of Texturing for Silicon Solar Cells", Solar Energy Materials and solar cells, Vol. 72, No.1, pp. 291-298, 2002.
[19] Zhao, J., Wang, A., Green, M. A., Ferrazza, F., "19.8% Efficient “Honeycomb” Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells", Applied Physics Letters, Vol. 73, No. 14, pp. 1991-1993, 1998.
[20] Michael, S., Michalopoulos, P., "A New Technique for the Development of State-of-the-Art Photovoltaic Devices Using Silvaco Software", Proceedings of the 6th WSEAS International Multiconference on Circuits, Systems, Communications and Computers, pp. 4121-4125, 2002.
[21] Michael, S., Bates, A. D., Green, M. S., "Silvaco ATLAS as a Solar Cell Modeling Tool", Proceedings of the 31th IEEE Photovoltaic Specialists Conference, pp. 719-721, 2005.
[22] Elbar, M., Tobbeche, S., Merazga, A., "Effect of Top-Cell CGS Thickness on the Performance of CGS/CIGS Tandem Solar Cell", Solar Energy, Vol. 122, pp. 104-112, 2015.
[23] Ahmad, T., Sobhan, S., Arif, S., "MATLAB Simulation Based Efficiency Study for Two Diode Model of Photovoltaic Solar Cell", International Journal of Engineering and Technology, vol. 6, No.1, 2016.
[24] Takamoto, T., Ikeda, E., Kurita, H., Ohmori, M., "Over 30% Efficient InGaP/GaAs Tandem Solar Cells", Applied Physics Letters, Vol. 70, No. 3, pp. 381-383, 1997.
[25] Li, W., et al. "GaInP/AlInP Tunnel Junction for GaInP/GaAs Tandem Solar Cells", Electronics Letters, Vol. 34, No. 4, pp. 406-407, 1998.
[26] Bour, D. P., Shealy, J. R., Wicks, G. W., Schaff, W. J., "Optical Properties of AlxIn1− xP Grown by Organometallic Vapor Phase Epitaxy", Applied Physics Letters, Vol. 50, No. 10, pp. 615-617, 1987.
[27] Najda, S. P., Kean, A. H., Dawson, M. D., Duggan, G., "Optical Measurements of Electronic Bandstructure in AlGaInP Alloys Grown by Gas Source Molecular Beam Epitaxy", Journal of applied physics, Vol. 77, No. 7, pp. 3412-3415, 1995.
[28] Chellaswamy, C., Ramesh, R., "Parameter Extraction of Solar Cell Models Based on Adaptive Differential Evolution Algorithm", Renewable Energy, Vol. 97, pp. 823-837, 2016.
[29] Ayala, Helon Vicente Hultmann, et al. "An Improved Free Search Differential Evolution Algorithm: A Case Study on Parameters Identification of one Diode Equivalent Circuit of a Solar Cell Module", Energy, Vol. 93, pp. 1515-1522, 2015.
[30] Zamani, H., Moghiman, M., Kianifar, A., "Optimization of the Parabolic Mirror Position in a Solar Cooker Using the Response Surface Method (RSM) ", Renewable Energy, Vol. 81, pp. 753-759, 2015.