مدلسازی وابسته به زمان و تحلیل فنی باتری جریانی اکسایشی-کاهشی وانادیومی با غشاء پلیمری

نویسندگان

1 سازمان پژوهشهای علمی صنعتی ایران

2 دانشگاه پیام نور

چکیده

مقاله حاضر، روشی نوین در طراحی، مدلسازی و ارزیابی باتری­های اکسایشی-کاهشی جریانی وانادیومی با غشاء پلیمری ارائه نموده است. باتری­های جریانی وانادیومی به عنوان یکی از فناوری­های پیشرفته در سیستمهای ذخیره­سازی انرژی مطرح شده­اند. این تحقیق، مبتنی بر مدلسازی عملکرد یک سلول باتری در شرایط گذرا می­باشد. مدل وابسته به زمان پیشنهادی، بر مبنای روابط جامع الکتروشیمیایی، مکانیک سیالاتی و مدار الکتریکی مفهومی معادل به همراه در نظر گرفتن فرضیات منطقی، محدودیت­ها و شرایط مرزی متناسب، توسعه یافته است. نتایج مدلسازی، رفتار متغیرهایی چون غلظت حالت­­های متفاوت اکسیدی وانادیوم، نرخ تغییرات حالت شارژ و ولتاژ تولیدی سلول باتری را در زمان کارکرد باتری بیان می­کند. از سوی دیگر، تحلیل پارامتریک صورت گرفته بر روی متغیرهای باتری، نشان دهنده اثر قابل توجه تغییر دما و غلظت اولیه محلول الکترولیت بر ولتاژ خروجی بوده است.

کلیدواژه‌ها


[1] Rychcik, M., Skyllas-Kazacos, M., "Characteristics of a New All-Vanadium Redox Flow Battery", Journal of Power Sources, Vol. 22, pp. 59-67, 1987. [2] Ghadamian, H., Hamidi, A. A., Farzaneh, H., Ozgoli, H. A., "Thermo-Economic Analysis of Absorption Air Cooling System for Pressurized Solid Oxide Fuel Cell/Gas Turbine Cycle", Journal of Renewable and Sustainable Energy, Vol. 4, pp. 043115-1 to 043115-14, 2012. [3] Jeorissen, L., Garche, J., Fabjan, C. H., Tomazic, G., "Possible Use of Vanadium Redox-Flow Batteries for Energy Storage in Small Grids and Stand-Alone Photovoltaic Systems", Journal of Power Sources, Vol. 127, pp. 98-104, 2004. [4] Kear, G., Shah, A. A., Walsh, F. C., "Development of the All-Vanadium Redox Flow Battery for Energy Storage: A Review of Technological", financial and policy aspects, International Journal of Energy Research, Vol. 36, pp. 1105-1120, 2011. [5] Yang, Z., Zhang, J., Kintner-Meyer, M. C. W., Choi, X., Lu, D., Lemmon, L. P., Liu, J., "Electrochemical Energy Storage for Green Grid", Chemical Reviews, Vol. 111, pp. 3577-3613, 2011. [6] Ponce de Leon, C., Frias-Ferrer, A., Gonzalez Garcia, J., Szanto, D. A., Walsh, F. C., “Redox Flow Cells for Energy Conversion”, Journal of Power Sources, Vol. 160, pp. 716-732, 2006. [7] Skyllas-Kazacos, M., Menicats, C., "The Vanadium Redox Battery for Emergency Back-up Applications", Proceedings of the 19th Intelec Meeting, IEEE Communication Society, Melbourne, Australia, pp. 463-471, 1997. [8] The VRB Energy Storage System (VRB-ESS™) the multiple benefits of integrating the VRB-ESS with wind energy - Case studies in MWH applications, Technical report, VRB Power Systems Inc., available in: http://wenku.baidu.com/view/4edece768e9951e79b8927a8, 2007. [9] Sum, E., Skyllas-Kazacos, M., "A Study of V(II)/V(III) Redox Couple for Redox Flow Cell Applications", Journal of Power Sources, Vol. 15, pp. 179-190, 1985. [10] Mohamed, M. R., Ahmad, H., Abu Seman, M. N., "Estimating the State-of-Charge of All-Vanadium Redox Flow Battery Using a Divided, Open Circuit Potentiometric Cell", Electronika IR Elektrotechnika, Vol. 19, pp. 37-42, 2013. [11] Aaron, D. S., Liu, Q., Tang, Z., Grim, G. M., Papandrew, A. B., Turhan, A., Zawodzinski, T. A., Mench, M. M., "Dramatic Performance Gains in Vanadium Redox Flow Batteries Through Modified Cell Architecture", Journal of Power Sources, Vol. 206, pp. 450–453, 2012. [12] Xu, Q., Zhao, T. S., Leung, P. K., "Numerical Investigations of Flow Field Designs for Vanadium Redox Flow Batteries", Applied Energy, Vol. 105, pp. 47–56, 2013. [13] Mohamed, M. R., Sharkh, S. M., Ahmad, H., Abu Seman, M. N., Walsh, F. C., "Design and Development of Unit Cell and System for Vanadium Redox Flow Batteries (V-RFB)", International Journal of the Physical Sciences, Vol. 7, pp. 1010-1024, 2012. [14] Skyllas-Kazacos, M., Robbins, R. G., "The All Vanadium Redox Battery", U.S. Patent No. 849 094, 1986. [15] Esfahanian, V., Mahmoodi, H., Babazadeh, H., Aghvami, M., Pasandeh, R., Torabi, F., Ahmadi, G., "Numerical Simulation of Electrolyte Particles Trajectory to Investigate Battery Cover Design Characteristics", Journal of Power Sources, Vol. 191, pp. 139-143. 2009. [16] Shah, A. A., Watt-Smith, M. J., Walsh, F. C., "A Dynamic Performance Model for Redox-Flow Batteries Involving Soluble Species", Electrochimica Acta, Vol. 53, pp. 8087–8100, 2008. [17] You, D., Zhang, H., Chen, J., "A Simple Model for the Vanadium Redox Battery", Electrochimica Acta, Vol. 54, pp. 6827–6836, 2009. [18] Tang, A., Ting, S., Bao, J., Skyllas-Kazacos, M., "Thermal Modelling and Simulation of the All-Vanadium Redox Flow Battery", Journal of Power Sources, Vol. 203, pp. 165–176, 2012. [19] Corcuera, S., Skyllas-Kazacos, M., "State-Of-Charge Monitoring and Electrolyte Rebalancing Methods for the Vanadium Redox Flow Battery", European Chemical Bulletin, Vol. 1, pp. 511-519, 2012. [20] Knehr, K. W., Agar, E., Dennison, C. R., Kalidindi, A. R., Kumbur, E. C., "A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport through the Membrane", Journal of The Electrochemical Society, Vol. 159, pp. A1446-A1459, 2012. [21] You, D., Zhang, H., Sun, C., Ma, X., "Simulation of the Self-Discharge Process in Vanadium Redox Flow Battery", Journal of Power Sources, Vol. 196, pp. 1578–1585, 2011. [22] Li, M., Hikihara, T., "A Coupled Dynamical Model of Redox Flow Battery Based on Chemical Reaction, Fluid Flow, and Electrical Circuit", Institute of Electronics, Information and Communication Engineers, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E91–A, pp. 1741-1727, 2008. [23] Zhao, P., Zhang, H., Zhou, H., Chen, J., Gao, S., Yi, B., "Characteristics and Performance of 10kW class All-Vanadium Redox-Flow Battery Stack", Journal of Power Sources, Vol. 162, pp. 1416–1420, 2006. [24] Mohamed, M. R., Ahmad, H., Abu Seman, M. N., Razali, S., Najib, M. S., "Electrical Circuit Model of a Vanadium Redox Flow Battery Using Extended Kalman filter", Journal of Power Sources, Vol. 239, pp. 284-293, 2013. [25] Xiong, B., Zhao, J., Tseng, K. J., Skyllas-Kazacos, M., Lim, T. M., Zhang, Y., "Thermal Hydraulic Behavior and Efficiency Analysis of an All-Vanadium Redox Flow Battery", Journal of Power Sources, Vol. 242, pp. 314-324, 2013. [26] Binyu, X., Zhao, J., Zhongbao, W., Chenda, Z., "State of Charge Estimation of an All-Vanadium Redox Flow Battery Based on a Thermal-Dependent Model", Power and Energy Engineering Conference (APPEEC), IEEE PES Asia-Pacific, 8-11 Dec., Kowloon, pp. 1–6, 2013. [27] Tang, A., Bao, J., Skyllas-Kazacos, M., "Dynamic Modelling of the Effects of Ion Diffusion and Side Reactions on the Capacity Loss for Vanadium Redox Flow Battery", Journal of Power Sources, Vol. 196, pp. 10737–10747, 2011. [28] Li, L., Kim, S., Wang, W., Vijayakumar, M., Nie, Z., Chen, B., Zhang, J., Xia, G., Hu, J., Graff, G., Liu, J., Yang, Z., "A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage", Advanced Energy and Materials, Vol. 1, pp. 394-400, 2011. [29] Ozgoli, H. A., Elyasi, S., Mollazadeh, M., "Hydrodynamic and Electrochemical Modeling of Vanadium Redox Flow Battery", Mechanics & Industry, Vol. 16, pp. 201-1 to 201-13, 2015. [30] Al-Fetlawi, H., Shah, A. A., Walsh, F. C., "Non-Isothermal Modelling of the All-Vanadium Redox Flow Battery", Electrochimica Acta, Vol. 55, pp. 78–89, 2009. [31] Al-Fetlawi, H., Shah, A. A., Walsh, F. C., "Modelling the Effects of Oxygen Evolution in the All-Vanadium Redox Flow Battery", Electrochimica Acta, Vol. 55, pp. 3192–3205, 2010. [32] Vynnycky, M., "Analysis of a Model for the Operation of a Vanadium Redox Battery", Energy, Vol. 36, pp. 2242-2256, 2011. [33] Schmal, D., Van Erkel, J., Van Dnin, P. J., "Mass Transfer at Carbon Fibre Electrodes", Journal of Applied Electrochemistry, Vol. 16, pp. 422-430, 1986. [34] Tomadakis, M., Robertson, T. J., "Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates with Experimental and Analytical Results", Journal of Composite Materials, Vol. 39, pp. 163-187, 2005. [35] Gonzaˇılez-Garcıˇıa, J., Bonete, P., Expoˇısito, E., Montiel, V., Aldaz, A., Torregrosa-Macia, R., "Characterization of a Carbon Felt Electrode: Structural and Physical Properties", Journal of Materials Chemistry, Vol. 9, pp. 419-426, 1999. [36] Skyllas-Kazacos, M., Menictas C., Kazacos, M., "Thermal Stability of Concentrated V(V) Electrolytes in the Vanadium Redox Cell", Journal of Electrochemical Society, Vol. 143, pp. L86-L88, 1996. [37] Sukkar, T., Skyllas-Kazacos, M., "Water Transfer Behaviour across Cation Exchange Membranes in the Vanadium Redox Battery", Journal of Membrane Science, Vol. 222, pp. 235–247, 2003. [38] Wen, Y., Zhang, H., Qian, P., Zhao, P., Zhou, H., Yi, B., "Investigations on the Electrode Process of Concentrated V(IV)/V(V) Species in a Vanadium Redox Flow Battery", Acta Physico-Chimica Sinica, Vol. 22, pp. 403-408, 2006. [39] Heintz, A., Illenberger, C., "Thermodynamics of Vanadium Redox Flow Batteries - Electrochemical and Calorimetric Investigations", Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 102, pp.1401–1409, 1998. [40] Tang, A., Bao, J., Skyllas-Kazacos, M., "Thermal Modelling of Battery Configuration and Self -Discharge Reactions in Vanadium Redox Flow Battery", Journal of Power Sources, Vol. 216, pp. 489-501, 2012.