Energy and Exergy Analysis of a Turboprop Engine at Different Working Condition

Authors

Abstract

Exergy analysis is a method of evaluation the proportion of each process on the transmission of system availability and also determination of ways through which the useful energy is lost. In this research, a turboprop engine is simulated by using GASTURB 10 commercial software which has developed based on zero-dimensional approach. The performance of turboprop engine is calculated at the design point and some off-design points, and afterwards thermodynamic properties of engine components at different flight altitudes and Mach numbers are calculated. Then, the necessary conceptual basis for exergy analysis, through the definition of exergy terms and using related exergy equilibrium equations, is introduced. At the end, thermodynamic data obtained from GASTURB software are used to exergy analysis of engine components. Results show that combustion process has the dominant portion of the system irreversibility.

Keywords


[1] Choi, J. W. and Sung, H. G., "Performance Analysis of an Aircraft Gas Turbine Engine using Particle Swarm Optimization", International Journal of Aeronautical & Space Science, Vol. 15, No. 4, pp. 434-443, 2014. [2] هیل، فیلیپ و پیترسون، کارل. مکانیک و ترمودینامیک پیش‌رانش، ترجمه مظاهری، کریم و ایوبی، محمدعلی، انتشارات علمی دانشگاه صنعتی شریف، چاپ اول، 1377. [3] Farokhi, S., Aircraft Propulsion, Second Edition, John Wiley & Sons Ltd, 2014. [4] Teymourtash, A. and Rahmanian, B., "Performance Simulation of a Turboprop Engine in On-design and Off-design Condition", The 9th Iranian Aerospace Society Conference, Aero 2010-4082, Feb. 8-10, 2010. [5] Palmer, J. R. and Cheng-Zhong, Y., "TURBOTRANS: A Programming Language for the Performance Simulation of Arbitrary Gas Turbine Engines with Arbitrary Control Systems", International Journal of a Turbo and Jet engines, 2, pp. 19-28, 1985. [6] Douglas, I. E., Development of a Generalized Computer Program for Gas Turbine Performance Simulation, Ph.D. Theses, Cranfield University, United Kingdom, 1986. [7] Schobeiri, M. T., Attia, M. and Lippke, C., "GETRAN: A Generic, Modularly, Structured Computer Code for Simulation of Dynamic Behavior of Aero and Power Generation Gas Turbine Engines", Journal of Engineering for Gas Turbines and Power, Vol. 116, pp. 483-494, July 1994. [8] Sellers, J. F. and Daniele, C. J., "DYNGEN - A Program for Calculating Steady-State and Transient Performance of Turbojet and Turbofan Engines", NASA TN D-7901, April, 1975. [9] El-Masri M. A., "GASCAN-An Interactive Code for Thermal Analysis of Gas Turbine Systems", Journal of Engineering for Gas Turbines and Power, Vol. 110, pp. 201-209, 1988. [10] Kong, C., "Performance Simulation of a Turboprop Engine for Basic Trainer", KSME-International Journal, Vol. 16, No. 6, pp. 839-850, 2002. [11] Taslimi-Taleghani, S., Amainifard, N. and Atashkari, K., "Aero-Thermodynamic Optimization of Turboprop Engines Using Multi-Objective Genetic Algorithms", IJE TRANSACTIONS A: BASICS, Vol. 23, No. 3&4, pp. 253-266, November 2010. [12] Crainic, C., Thompson, A. and Harvey, R., "Real Time Thermodynamic Transient Model for Three Spool Turboprop Engine", International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, Florida, June 2-June 5, 1997. [13] Kong, C. and Roh, H., "Steady-State Performance Simulation of PT6A-62 Turboprop Engine Using SIMULINK®", International Journal of Turbo and Jet Engines, Vol. 20, pp. 183-194, 2003. [14] Jarrett, A. and Chen, Y., "Validation of a Gas Turbine Thermodynamic Model without Accurate Component Maps", no. 50800, p. V02CT47A024, 2017. [15] Lee, J. J., "Can We Accelerate the Improvement of Energy Efficiency in Aircraft Systems?", Journal of Energy Convers Manage, Vol. 51, pp. 189-196, 2001. [16] Rosen, M. A., "Assessing Energy Technologies and Environmental Impacts with the Principles of Thermodynamics", Journal of Applied Energy, Vol. 72, pp. 427-441, 2002. [17] Rosen, M. A. and Dincer, I., "Exergoeconomic Analysis of Power Plants Operating on Various Fuels", Journal of Applied Thermal Engineering, Vol.23, pp. 643-658, 2003. [18] Etele, J. and Rosen, M. A., "Sensitivity of Exergy Efficiencies of Aerospace Engines to Reference Environment Selection", Exergy International Journal, Vol. 1, pp. 91-99, 2001. [19] Turgut, E. T, Karakoc, T. H. and Hepbasli, A., "Exergetic Analysis of an Aircraft Turbofan Engine", International Journal of Energy, Vol. 31, pp. 1383-1397, 2007. [20] Coban, K., Colpan C. O. and Karakoc, T. H., "Application of Thermodynamic Laws on a Military Helicopter Engine", Journal of Energy, pp. 1-10, 2017. [21] Turan, O., "Effect of Reference Altitudes for a Turbofan Engine with the Aid of Specific-Exergy Based Method", International Journal of Energy, Vol. 11, pp. 252-270, 2012. [22] Turan, Ö. and Aydın, H., "Numerical Calculation of Energy and Exergy Flows of a Turboshaft Engine for Power Generation and Helicopter Applications", Energy, vol. 115, pp. 914-923, 2016. [23] Balli, O., Aras, H., Aras, N. and Hepbasli, A., "Exergetic and Exergoeconomic Analysis of an Aircraft Jet Engine (AJE)", International Journal of Energy, Vol. 5, pp. 567-581, 2008. [24] Balli, O. and Hepbasli, A., "Energetic and Exergetic Analyses of T56 Turboprop Engine", Energy Conversion and Management Vol. 73, pp. 106-120, 2013. [25] Balli, O., "Advanced Exergy Analyses of an Aircraft Turboprop Engine (TPE)", Energy, Vol. 124, pp. 599-612, 2017. [26] Onder, T., "Exergetic Effects of Some Design Parameters on the Small Turbojet Engine for Unmanned Air Vehicle Applications", Journal of Energy, Vol. 46, pp. 51-61, 2012. [27] Sohret, Y., Dinç, A. and Karakoç, T. H., "Exergy Analysis of a Turbofan Engine for an Unmanned Aerial Vehicle during a Surveillance Mission", Journal of Energy, Vol. 93, pp. 716-729, 2015. [28] Abbas, M. and Riggins, D. W., "Exergy-Based Performance Analysis of a Turbojet Engine", 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, July 25-27, 2016. [29] Balli, O., "Advanced Exergy Analyses to Evaluate the Performance of a Military Aircraft Turbojet Engine (TJE) with Afterburner System: Splitting Exergy Destruction into Unavoidable/Avoidable and Endogenous /Exogenous", Journal of Applied Thermal Engineering, Vol. 111, pp. 152-169, 2017. [30] Cohen, H., Rogers, G. F. C., Saravanamuttoo, H. I. H., Gas Turbine Theory, 4th ed., 1996. [31] Balli, O., Aras, H. and Hepbasli, A., "Thermodynamic and Thermoeconomic Analyses of a Trigeneration (TRIGEN) System with a Gas–Diesel Engine: Part I-Metdodology", Energy Convers Manage, Vol. 51, pp. 2252-2259, 2010. [32] Sonntag, R. E., Borgnakke, C. and Van Wylen, G. J., Fundamentals of Thermodynamics, New York, John Wiley and sons, Inc., 6th ed., 2003. [33] Bejan, A., Advanced Engineering Thermodynamics, New York, John Wiley and sons, Inc., 1988. [34] Rakopoulos, C. D. and Giakoumis, E. G., "Second-Law Analyses Applied to Internal Combustion Engines", Operation Progress in Energy and Combustion Science, Vol. 32, pp. 2-47, 2006. [35] Wark, K., Advanced Thermodynamics for Engineers, New York, McGraw Hill, 1995. [36] گودرزی، امیر، دوستدار، محمد مهدی، «تحلیل انرژی، اگزرژی و اقتصادی موتور احتراق داخلی مجهز به سیستم‌های پرخوران و خنک‌کن میانی»، مجله مهندسی و مدیریت انرژی، شماره 2، صفحۀ 52ـ61، 1394. [37] Mansouri, M. T., Ahmadi, P., Kaviri, A. G. and Jaafar, M. N. M., "Exergetic and Economic Evaluation of the Effect of HRSG Configurations on the Performance of Combined Cycle Power Plants", Energy Convers Manage, Vol. 58, pp. 47-58, 2012. [38] Rakopoulos, C. D. and Giakoumis, E. G., "Second-Law Analyses Applied to Internal Combustion Engines Operations", Prog Energy Combust Sci, Vol. 32, pp. 2-47, 2006. [39] Aydın, H., Turan, O., Karakoc, T. H. and Midilli, A., "Component-Based Exergetic Measures of an Experimental Turboprop/Turboshaft Engine for Propeller Aircrafts and Helicopters", International Journal of Exergy, Vol. 3, pp. 322-348, 2012. [40] گودرزی، امیر، «آنالیز اگزرژی سیستم‌های توربوچارج در موتورهای احتراق داخلی»، کارشناسی ارشد، دانشگاه صنعتی شریف، تهران، ایران، 1391. [41] گودرزی، امیر، دوستدار، محمد مهدی، «مقایسۀ اگزرژیک عملکرد موتورهای احتراق داخلی اشتعال جرقه‌ای برای سوخت‌های بنزین، متان و هیدروژن»، مجله سوخت و احتراق، دورۀ 7، صفحۀ 90ـ105، 1393. [42] Chase, M. W., "JANAF Thermochemical Tables", Washington, DC: American Chemical Society; New York: American Institute of Physics for the National Bureau of Standards, c1986. United States. National Bureau of Standards. (1986).