Feasibility of Usage Recovery Heat Exchanger in Vapor Compression Refrigeration Cycle by Using Thermodynamic, Heat Transfer and Economic Analyses

Authors

Abstract

Usually, it is common to use the internal heat exchanger subcooler-superheater after the condenser and before the expansion valve in the compression refrigeration cycles. In this study, the effect of the heat exchanger is evaluated by using recovery heat exchanger after the compressor and before the condenser. To this end, the vapor compression refrigeration cycle with conventional heat exchanger thermaly and economically is analyzed by using R134a, R1234ze, R1234yf and isotropic R507A refrigerants. The simulated compression refrigeration has low capacity, and the condenser and the evaporator heat exchangers such as household refrigerators are air-cooled by natural convection of air. The findings show that the use of the recovery heat exchanger in the compression refrigeration cycle has resulted in a significant reduction the total amount of heat exchangers’ required area and the total cost function in the cycle. Also, R1234yf refrigerant has demonstrated the greatest decrease in the total heat exchangers required area in the cycle and in the total cost of the system. It is, thus, recommended to use R1234yf refrigerants in compression refrigeration cycles instead of R134a ones.

Keywords


[1] هاشمی، سید عبدالمهدی، حسن‌زاده نجاری، امیرحسین، طباطبایی، سید محمد، «طراحی‌، ساخت و تحلیل یک پمپ حرارتی زمین گرمایی»، نشریۀ مهندسی و مدیریت انرژی، دورۀ 7، شمارۀ 1، 48ـ59، 1396. [2] ناصر علوی، سید رضا، آتشکاری، کاظم، امیر علیپور، مجید، کوهی کمالی، رامین، «شبیه‌سازی و بهینه‌سازی اگزرژی-اقتصادی یک سیستم تولید سه‌گانه»، نشریۀ مهندسی و مدیریت انرژی، دورۀ 8، شمارۀ 1، 1397. [3] Selbas, R., Kizilkan, O., Sensan, A., "Thermoeconomic Optimization of Subcooled and Superheated Vapor Compression Refrigeration Cycle", Energy, Vol. 31, No. 12, pp. 2108-2128, 2006. [4] Yang, M. H., Yeh, R. H., "Performance and Exergy Destruction Analyses of Optimal Subcooling for Vapor-Compression Refrigeration Systems", International Journal of Heat and Mass Transfer, Vol. 87, pp. 1-10, 2015. [5] Hermes, Ch. J. L., "Refrigerant Charge Reduction in Vapor Compression Refrigeration Cycles via Liquid-to-suction Heat Exchange", International Journal of Refrigeration, Vol. 52, pp. 93-99, 2015. [6] He, J., Wu, Y., Chen, X., Lu, Y., Ma, Ch., Du, Ch., Liu, G., Ma, R., "Experimental Study of a Miniature Vapor Compression Refrigeration System with Two Heat Sink Evaporators Connected in Series or in Parallel", International Journal of Refrigeration, Vol. 49, pp. 28-35, 2015. [7] Lee, D., Seong, K. J., Lee, J., "Performance Investigation of Vapor and Liquid Injection on a Refrigeration System Operating at High Compression Ratio", International Journal of Refrigeration, Vol. 53, pp. 115-125, 2015. [8] She, X., Yin, Y., Zhang, X., "A Proposed Subcooling Method for Vapor Compression Refrigeration Cycle Based on Expansion Power Recovery", International Journal of Refrigeration, Vol. 43, pp. 50-61, 2014. [9] Bilir Sag, N., Ersoy, H. K., Hepbasli, A., Halkaci, H. S., "Energetic and Exergetic Comparison of Basic and Ejector Expander Refrigeration Systems Operating Under the Same External Conditions and Cooling Capacities", Energy Conversion and Management, Vol. 90, pp. 184-194, 2015. [10] Molés, F., Navarro-Esbrí, J., Peris, B., Mota-Babiloni, A., Barragán-Cervera, Á., "Theoretical Energy Performance Evaluation of Different Single Stage Vapour Compression Refrigeration Configurations using R1234yf and R1234ze(E) as Working Fluids", International Journal of Refrigeration, Vol. 44, pp. 141-150, 2014. [11] Yataganbaba, A., Kilicarslan, A., Kurtbas, I., "Exergy Analysis of R1234yf and R1234ze as R134a Replacements in a Two Evaporator Vapour Compression Refrigeration System", International Journal of Refrigeration, Vol. 60, pp. 26-37, 2015. [12] Dincer, I., Rosen, M. A., "Exergy, Energy, Environment and Sustainable Development", pp. 23-30, Elsevier, 2007. [13] Kotas, T. J., "The Exergy Method of Thermal Plant Analysis", pp. 64-65, Florida: Krieger Publishing Company, 1995. [14] Dincer, I., Konoglu, M., "Refrigeration Systems and Application", pp. 161-166, United Kingdom: Wiley, 2010. [15] Yan, G., Chen, J., Yu, J., "Energy and Exergy Analysis of a New Ejector Enhanced Auto-cascade Refrigeration Cycle", Energy Conversion and Management, Vol. 105, pp. 509-517, 2015. [16] Shah, R. K., Sekulic, D. P., "Fundamentals of Heat Exchanger Design", pp. 186-206, Canada: Wiley, 2003. [17] Florides, G., Kalogirou, S., Tassou, S., Wrobel, L., "Design and Construction of a LiBr-water Aabsorption Machine", Energy Conversion and Management, Vol. 44, pp. 2483-2508, 2003. [18] Kian, H., Sedaghat, A., "Multi-Criteria Optimization of a Solar Cooling System Assisted Ground Source Heat Pump system", Modares Mechanical Engineering, Vol. 16, No. 1, pp. 51-62, 2016. (in Persian) [19]Hanifi, K., Javaherdeh, K., Yari, M., "Exergy, Exergoeconomic Analysis and Optimization of Cogeneration Cycle under Solar Radiation Dynamic Model by using Genetic Algorithm", Modares Mechanical Engineering, Vol. 15, No. 5, pp. 205-216, 2015. (in Persian) [20] Valero, A., "CGAM problem: Definition and Conventional Soloution", Energy, Vol. 19, No. 3, pp. 268-279, 1994. [21] Mosaffa, A. H., Garousi, L., "Exergoeconomic and Environmental Analyses of an Air Conditioning System using Thermal Energy Storage", Applied Energy, Vol. 162, pp. 515-526, 2016. [22] Vaibhav, J., Gulshan, S., Surendra, S. K., "Energy, Exergy, Economic and Environmental (4E) Enalyses based Comparative Performance Study and Optimization of Vapor Compression-absorption Integrated Refrigeration System", Energy, Vol. 91, pp. 816-832, 2015. [23] Vaibhav, J., Gulshan, S., Surendra, S. K., Bhavesh, P., "Thermoeconomic and Environmental Analyses based Multi-objective Optimization of Vapor Compression–Absorption Cascaded Refrigeration System using NSGA-II Technique", Energy Conversion and Management, Vol. 113, pp. 230-242, 2016. [24] Sadeghi, M., Mahmoudi, S. M. S., Khoshbakhti Saray, R., "Exergoeconomic Analysis and Multi-objective Optimization of an Ejector Refrigeration Cycle Powered by an Internal Combustion (HCCI) Engine", Energy Conversion and Management, Vol. 96, pp. 403-417, 2015. [25] Sanaye, S., Malekmohammadi, H., "Thermal and Economical Optimization of Air Conditioning Units with Vapor Compression Refrigeration System", Applied Thermal Engineering, Vol. 24, pp. 1807-1825, 2004.