Simulation and Performance Analysis of High-Efficiency Solar Cells with Absorber Layers Composed of Silicon and Cadmium Telluride

Document Type : Original Article

Authors

Department of Electrical Engineering, Ya.C., Islamic Azad University, Yazd, Iran

Abstract

In the search for sustainable and cost-effective solutions for energy generation, thin-film solar cells, composed of cadmium telluride (CdTe) and silicon (Si), have emerged as a powerful option. This study, using SCAPS-1D simulation software, investigates the performance and optimization of these solar cells in detail. The main focus is on the effect of the thickness of five different buffer layers, including CdS, In₂S₃, ZnO, ZnSe, and ZnS, which are applied in thicknesses ranging from 10 to 100 nm. The proposed FTO/ZMO/CdTe/CdSiₓTeᵧ/p-Si/ZnTe:Mo/Au structure included a CdSiₓTeᵧ interlayer to reduce the lattice mismatch between CdTe and Si. The theoretical simulation resulted in SCAPS-1D environment showed that by optimizing the structural parameters under idealized conditions, a predicted energy conversion efficiency of 28.42% could be theoretically achieved. These results represented theoretical limits and required experimental validation for practical implementation with an open circuit voltage of 0.838 V, a short circuit current of 43.46 mA/cm2, and a form factor of 86.11%. This research demonstrated that an interface state density of less than 1016 cm⁻² was essential for optimal performance. The findings of this research pave the way for the development of a new generation of solar cells with high efficiency and low manufacturing cost.

Keywords

Main Subjects


[1] Yamaguchi, M., Yamada, H., Katsumata, Y., Lee, K.H., Araki, K., Kojima, N., "Efficiency potential and recent activities of high-efficiency solar cells", Journal of Materials Research, Vol. 32, No. 18, pp. 3445–3457, 2017, https://doi.org/10.1557/jmr.2017.335.
[2] Zhang, T., Wang, M., Yang, H., "A review of the energy performance and life-cycle assessment of building-integrated photovoltaic (BIPV) systems", Energies, Vol. 11, No. 11, p. 3157, 2018, https://doi.org/10.3390/en11113157.
[3] Williams, B.L., Major, J.D., Bowen, L., Phillips, L., Zoppi, G., Forbes, I., Durose, K., "Challenges and prospects for developing CdS/CdTe substrate solar cells on Mo foils", Solar Energy Materials and Solar Cells, Vol. 124, pp. 31–45, 2014, https://doi.org/10.1016/j.solmat.2014.01.017.
[4] Green, M.A., Dunlop, E.D., Hohl‐Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X., "Solar cell efficiency tables (Version 61)", Progress in Photovoltaics: Research and Applications, Vol. 31, No. 1, pp. 3–16, 2023, https://doi.org/10.1002/pip.3646.
[5] Wilson, G.M., Al-Jassim, M., Metzger, W.K., Glunz, S.W., Verlinden, P., Xiong, G., Mansfield, L.M., Stanbery, B.J., Zhu, K., Yan, Y., et al., "The 2020 photovoltaic technologies roadmap", Journal of Physics D: Applied Physics, Vol. 53, No. 49, 493001, 2020, https://doi.org/10.1088/1361-6463/ab9c6a.
[6] Echendu, O.K., Dejene, F.B., Dharmadasa, I.M., "An investigation of the influence of different transparent conducting oxide substrates/front contacts on the performance of CdS/CdTe thin-film solar cells", Journal of Materials Science: Materials in Electronics, Vol. 28, No. 24, pp. 18865–18872, 2017, https://doi.org/10.1007/s10854-017-7838-x.
[7] Hatton, P., Abbas, A., Kaminski, P., Yilmaz, S., Watts, M., Walls, M., Goddard, P., Smith, R., "Inert gas bubble formation in magnetron sputtered thin-film CdTe solar cells", Proceedings of the Royal Society A, Vol. 476, No. 2240, 20200056, 2020, https://doi.org/10.1098/rspa.2020.0056.
[8] Akhtaruzzaman, M., Shahiduzzaman, M., Amin, N., Muhammad, G., Islam, M.A., Sobayel, K., Sopian, K., "Impact of Ar flow rates on micro-structural properties of WS thin film by RF magnetron sputtering", Nanomaterials, Vol. 11, No. 7, 1635, 2021, https://doi.org/10.3390/nano11071635.
[9] Hossain, M.S., Rahman, K.S., Karim, M.R., Aijaz, M.O., Dar, M.A., Shar, M.A., Misran, H., Amin, N., "Impact of CdTe thin film thickness in ZnₓCd₁₋S/CdTe solar cell by RF sputtering", Solar Energy, Vol. 180, pp. 559–571, 2019, https://doi.org/10.1016/j.solener.2019.01.019.
[10] Olusola, O.I., Madugu, M.L., Ojo, A.A., Dharmadasa, I.M., "Development of CdMnTe thin films using electroplating technique for opto-electronic device applications", Journal of Materials Science: Materials in Electronics, Vol. 31, No. 24, pp. 22151–22161, 2020, https://doi.org/10.1007/s10854-020-04717-5.
[11] Gawron, W., Sobieski, J., Manyk, T., Kopytko, M., Madejczyk, P., Rutkowski, J., "MOCVD grown HgCdTe heterostructures for medium wave infrared detectors", Coatings, Vol. 11, No. 5, 611, 2021, https://doi.org/10.3390/coatings11050611.
[12] Arya, R.R., Sarro, P.M., Loferski, J.J., "Efficient cadmium sulfide on silicon solar cells", Applied Physics Letters, Vol. 41, No. 4, pp. 355–357, 1982, https://doi.org/10.1063/1.93511.
[13] Romeo, N., Bosio, A., Canevari, V., Podestà, A., "Recent progress on CdTe/CdS thin film solar cells", Solar Energy, Vol. 77, No. 6, pp. 795–801, 2004, https://doi.org/10.1016/j.solener.2004.07.011.
[14] Britt, J., Ferekides, C., "Thin-film CdS/CdTe solar cell with 15.8% efficiency", Applied Physics Letters, Vol. 62, No. 22, pp. 2851–2852, 1993, https://doi.org/10.1063/1.109629.
[15] Romeo, A., Khrypunov, G., Kurdesau, F., Arnold, M., Bätzner, D.L., Zogg, H., Tiwari, A.N., "High-efficiency flexible CdTe solar cells on polymer substrates", Solar Energy Materials and Solar Cells, Vol. 90, No. 18, pp. 3407–3415, 2006, https://doi.org/10.1016/j.solmat.2005.09.020.
[16]Burgelman, M., Nollet, P., Degrave, S., "Modelling polycrystalline semiconductor solar cells", Thin Solid Films, Vol. 361–362, pp. 527–532, 2000, https://doi.org/10.1016/S0040-6090(99)00825-1.
[17] Sites, J.R., Mauk, P.H., "Diode quality factor determination for thin-film solar cells", Solar Cells, Vol. 27, No. 1–4, pp. 411–417, 1989, https://doi.org/10.1016/0379-6787(89)90050-1.
[18] Dharmadasa, I.M., Bingham, P.A., Echendu, O.K., Salim, H.I., Druffel, T., Dharmadasa, R., Sumanasekera, G.U., et al., "Fabrication of CdS/CdTe-based thin film solar cells using an electrochemical technique", Coatings, Vol. 4, No. 3, pp. 380–415, 2014, https://doi.org/10.3390/coatings4030380.
[19] Kartopu, G., Turkay, D., Ozcan, C., Hadibrata, W., Aurang, P., Yerci, S., Uzum, A., et al., "Progress in upscaling CdTe thin film PV manufacturing using MOCVD", Solar Energy Materials and Solar Cells, Vol. 191, pp. 78–85, 2018, https://doi.org/10.1016/j.solmat.2018.11.002.
[20]Major, J.D., Treharne, R.E., Phillips, L.J., Durose, K., "A low-cost non-toxic post-growth activation step for CdTe solar cells", Nature, Vol. 511, No. 7509, pp. 334–337, 2014, https://doi.org/10.1038/nature13435.
[21] McCandless, B.E., Sites, J.R., "Cadmium telluride solar cells", Handbook of Photovoltaic Science and Engineering, pp. 600–641, 2011, https://doi.org/10.1002/9780470974704.ch14.
[22] Spalatu, N., Hiie, J., Mikli, V., Krunks, M., Valdna, V., Maticiuc, N., Raadik, T., Caraman, M., "Postdeposition processing of CdTe thin films: The effect of CdCl activation", Thin Solid Films, Vol. 582, pp. 128–133, 2015, https://doi.org/10.1016/j.tsf.2014.11.004.
[23] Swanson, D.E., Sites, J.R., Sampath, W.S., "Co-sublimation of CdSeTe/CdTe thin-film photovoltaic devices with greater than 22% efficiency", IEEE Journal of Photovoltaics, Vol. 7, No. 6, pp. 1581–1586, 2017, https://doi.org/10.1109/JPHOTOV.2017.2748593
[24] Li, C., Wu, Y., Poplawsky, J., Pennycook, T.J., Paudel, N., Yin, W., Haigh, S.J., et al., "Grain-boundary-enhanced carrier collection in CdTe solar cells", Physical Review Letters, Vol. 112, No. 15, 156103, 2014, https://doi.org/10.1103/PhysRevLett.112.156103.
[25]Munshi, A.H., Kephart, J.M., Abbas, A., Raguse, J.M., Beaudry, J.N., Barth, K.L., Walls, J.M., Sampath, W.S., "Polycrystalline CdTe photovoltaics with efficiency over 21% through improved hole collection", Solar Energy Materials and Solar Cells, Vol. 176, pp. 9–18, 2018, https://doi.org/10.1016/j.solmat.2017.11.031.
[26] Swarnkar, A., Marshall, A.R., Sanehira, E.M., Chernomordik, B.D., Moore, D.T., Christians, J.A., Chakrabarti, T., Luther, J.M., "Quantum dot–induced phase stabilization of α-CsPbI perovskite for high-efficiency photovoltaics", Science Advances, Vol. 10, No. 8, eadl2835, 2024, https://doi.org/10.1126/sciadv.adl2835.
[27] Luo, D., Su, R., Zhang, W., Gong, Q., Zhu, R., "Minimizing non-radiative recombination losses in perovskite solar cells", Nature Reviews Materials, Vol. 9, No. 3, pp. 215–232, 2024, https://doi.org/10.1038/s41578-023-00631-5.
[28] Liu, C., Yang, Y., Xia, X., Ding, Y., Arain, Z., An, S., Liu, X., et al., "Improved photovoltaic performance of CdTe solar cells by absorber surface modification", Solar Energy Materials and Solar Cells, Vol. 268, 112758, 2024, https://doi.org/10.1016/j.solmat.2023.112758.
[29] Green, M.A., Dunlop, E.D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G., Hao, X., "Solar cell efficiency tables (Version 63)", Progress in Photovoltaics: Research and Applications, Vol. 32, No. 1, pp. 3–13, 2024, https://doi.org/10.1002/pip.3750.