Efficiency Enhancement in a Perovskite Solar Cell with Carbon Electrodes by Plasmonic Coupled Nanoparticles

Document Type : Original Article

Authors

1 Department of Electrical Engineering, Ra.C., Islamic Azad University, Rasht, Iran

2 Department of Electrical Engineering, La.C., Islamic Azad University, Lahijan, Iran

Abstract

This research investigates the improvement of power conversion efficiency in thin-film organic–inorganic halide perovskite solar cells by incorporating plasmon-enhanced, coupled spherical core–shell nanoparticles into the absorber layer. To address the limitations of traditional metallic nanoparticles, core–shell structures were employed to improve both chemical and thermal stability. Electromagnetic field distributions and optical characteristics were analyzed by solving Maxwell’s equations, while the electrical performance parameters were obtained through numerical simulations of the Poisson and continuity equations. Under optimized conditions, the perovskite solar cell demonstrated a notable performance, achieving an open-circuit voltage (Voc) of 1.056 V, short-circuit current density (Jsc) of 22.885 mA/cm², fill factor (FF) of 85.70%, and a power conversion efficiency (PCE) of approximately 21%. Moreover, the use of a thinner perovskite absorber layer contributed to a reduction in lead-related toxicity. This study provides a comprehensive framework for incorporating plasmonic coupled core–shell nanoparticles into high-efficiency thin-film perovskite solar cells. It highlights the dual benefits of improved photovoltaic performance and a reduced environmental impact, paving the way for more sustainable solar technologies.

Keywords

Main Subjects


[1] Alkhalayfeh, M. A., Aziz, A. A., Pakhuruddin, M. Z., Katubi, K. M. M., "Recent advances of perovskite solar cells embedded with plasmonic nanoparticles", Physica Status Solidi (a), Vol. 218, No. 17, p. 2100310, 2021,  https://doi.org/10.1002/pssa.202100310.
[2] Green, M. A., Ho-Baillie, A., Snaith, H. J., "The emergence of perovskite solar cells", Nature Photonics, Vol. 8, No. 7, pp. 506-514, 2014,  https://doi.org/10.1038/nphoton.2014.134.
[3] Jangjoy, A., Bahador, H., Heidarzadeh, H., "Design of an ultra-thin silicon solar cell using localized surface plasmonic effects of embedded paired nanoparticles", Optics Communications, Vol. 450, pp. 216-221, 2019,  https://doi.org/10.1016/j.optcom.2019.06.007.
[4] Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells", Journal of the American Chemical Society, Vol. 131, No. 17, pp. 6050-6051, 2009,  https://doi.org/10.1021/ja809598r.
[5] Jangjoy, A., Matloub, S., "Optimizing carbon-based perovskite solar cells with pyramidal core–shell nanoparticles for high efficiency", Plasmonics, Vol. 20, No. 1, pp. 265-275, 2025,  https://doi.org/10.1007/s11468-024-02277-6.
[6] Wang, F., et al., "Materials toward the upscaling of perovskite solar cells: progress, challenges, and strategies", Advanced Functional Materials, Vol. 28, No. 52, p. 1803753, 2018,  https://doi.org/10.1002/adfm.201803753.
[7] Domanski, K., et al., "Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells", ACS Nano, Vol. 10, No. 6, pp. 6306-6314, 2016,  https://doi.org/10.1021/acsnano.6b02613.
[8] Cai, Y., Liang, L., Gao, P., "Promise of commercialization: Carbon materials for low-cost perovskite solar cells", Chinese Physics B, Vol. 27, No. 1, p. 018805, 2018,  https://doi.org/10.1088/1674-1056/27/1/018805.
[9] Mazumdar, S., Zhao, Y., Zhang, X., "Stability of perovskite solar cells: Degradation mechanisms and remedies", Frontiers in Electronics, Vol. 2, p. 712785, 2021,  https://doi.org/10.3389/felec.2021.712785.
[10] Mohanty, I., Mangal, S., Jana, S., Singh, U. P., "Stability factors of perovskite (CH3NH3PbI3) thinfilms for solar cell applications: A study", Materials Today: Proceedings, Vol. 39, pp. 1829-1832, 2021,  https://doi.org/10.1016/j.matpr.2020.06.183.
[11] Schileo, G., Grancini, G., "Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells", Journal of Materials Chemistry C, Vol. 9, No. 1, pp. 67-76, 2021,  https://doi.org/10.1039/D0TC04552G.
[12] Jangjoy, A., Matloub, S., "Optical simulation and design of high-absorption thin-film perovskite halide solar cells based on embedded quadrilateral cluster nanoparticles", Solar Energy, Vol. 242, pp. 10-19, 2022,  https://doi.org/10.1016/j.solener.2022.07.004.
[13] Deng, K., Liu, Z., Wang, M., Li, L., "Nanoimprinted gratingembedded perovskite solar cells with improved light management", Advanced Functional Materials, Vol. 29, No. 19, p. 1900830, 2019,  https://doi.org/10.1002/adfm.201900830.
[14] Tai, M., et al., "Ultrathin Zn2SnO4 (ZTO) passivated ZnO nanocone arrays for efficient and stable perovskite solar cells", Chemical Engineering Journal, Vol. 361, pp. 60-66, 2019,  https://doi.org/10.1016/j.cej.2018.12.056.
[15] Siavash Moakhar, R., et al., "Recent advances in plasmonic perovskite solar cells", Advanced Science, Vol. 7, No. 13, p. 1902448, 2020,  https://doi.org/10.1002/advs.201902448.
[16] Krajczewski, J., Kędziora, M., Kołątaj, K., Kudelski, A., "Improved synthesis of concave cubic gold nanoparticles and their applications for Raman analysis of surfaces", RSC Advances, Vol. 9, No. 32, pp. 18609-18618, 2019,  https://doi.org/10.1039/C9RA03012C.
[17] Shao, L., Susha, A. S., Cheung, L. S., Sau, T. K., Rogach, A. L., Wang, J., "Plasmonic properties of single multispiked gold nanostars: correlating modeling with experiments", Langmuir, Vol. 28, No. 24, pp. 8979-8984, 2012,  https://doi.org/10.1021/la2048097.
[18] Hanske, C., et al., "Large-scale plasmonic pyramidal supercrystals via templated self-assembly of monodisperse gold nanospheres", The Journal of Physical Chemistry C, Vol. 121, No. 20, pp. 10899-10906, 2017,  https://doi.org/10.1021/acs.jpcc.6b12161.
[19] Wu, F., et al., "Reduced hysteresis in perovskite solar cells using metal oxide/organic hybrid hole transport layer with generated interfacial dipoles", Electrochimica Acta, Vol. 354, p. 136660, 2020,(in Persian)  https://doi.org/10.1016/j.electacta.2020.136660.
[20] Li, S., Cao, Y.-L., Li, W.-H., Bo, Z.-S., "A brief review of hole transporting materials commonly used in perovskite solar cells", Rare Metals, Vol. 40, No. 10, pp. 2712-2729, 2021,(in Persian)  https://doi.org/10.1007/s12598-020-01691-z.
[21] Roose, B., Dey, K., Chiang, Y.-H., Friend, R. H., Stranks, S. D., "Critical assessment of the use of excess lead iodide in lead halide perovskite solar cells", The Journal of Physical Chemistry Letters, Vol. 11, No. 16, pp. 6505-6512, 2020,  https://doi.org/10.1021/acs.jpclett.0c01820.
[22] Kim, T., Lim, J., Song, S., "Recent progress and challenges of electron transport layers in organic–inorganic perovskite solar cells", Energies, Vol. 13, No. 21, p. 5572, 2020,  https://doi.org/10.3390/en13215572.
[23] Latif, H., et al., "Effect of target morphology on morphological, optical and electrical properties of FTO thin film deposited by pulsed laser deposition for MAPbBr3 perovskite solar cell", Surfaces and Interfaces, Vol. 24, p. 101117, 2021,  https://doi.org/10.1016/j.surfin.2021.101117.
[24] Luo, Q., et al., "Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells", ACS Applied Materials & Interfaces, Vol. 9, No. 40, pp. 34821-34832, 2017,  https://doi.org/10.1021/acsami.7b08489.
[25] Jangjoy, A., Matloub, S., "Theoretical study of Ag and Au triple core-shell spherical plasmonic nanoparticles in ultra-thin film perovskite solar cells", Optics Express, Vol. 31, No. 12, pp. 19102-19115, 2023,  https://doi.org/10.1364/OE.491461.
[26] Fard, A. H. M., Matloub, S., "Design and simulation of bifacial perovskite solar cell with high efficiency using cubic plasmonic nanoparticles", Solar Energy, Vol. 280, p. 112871, 2024,  https://doi.org/10.1016/j.solener.2024.112871.
[27] Chen, C.-W., Hsiao, S.-Y., Chen, C.-Y., Kang, H.-W., Huang, Z.-Y., Lin, H.-W., "Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells", Journal of Materials Chemistry A, Vol. 3, No. 17, pp. 9152-9159, 2015,  https://doi.org/10.1039/C4TA05237D.
[28] Haghighat, A., Ghadimi, A., Eskandarian, A., "Novel design of multi-layer cubic nanoparticles for achieving efficient thin-film perovskite solar cells", Plasmonics, Vol. 20, No. 3, pp. 1539-1549, 2025,  https://doi.org/10.1007/s11468-024-02394-2.
[29] Jangjoy, A., Matloub, S., "Design of novel cubic nanoparticle for boosting performance of carbon-based perovskite solar cells", Solar Energy, Vol. 286, p. 113155, 2025,  https://doi.org/10.1016/j.solener.2024.113155.
[30] Lee, Y.-M., Kim, S.-E., Park, J.-E., "Strong coupling in plasmonic metal nanoparticles", Nano Convergence, Vol. 10, No. 1, p. 34, 2023,  https://doi.org/10.1186/s40580-023-00383-5.
[31] Li, Y.-F., Kou, Z.-L., Feng, J., Sun, H.-B., "Plasmon-enhanced organic and perovskite solar cells with metal nanoparticles", Nanophotonics, Vol. 9, No. 10, pp. 3111-3133, 2020,  https://doi.org/10.1515/nanoph-2020-0099.
[32] Wong, Y. L., Jia, H., Jian, A., Lei, D., El Abed, A. I., Zhang, X., "Enhancing plasmonic hot-carrier generation by strong coupling of multiple resonant modes", Nanoscale, Vol. 13, No. 5, pp. 2792-2800, 2021,  https://doi.org/10.1039/D0NR07643K.