[1] Ashouri-Zadeh, A., Toulabi, M., Dobakhshari, A. S., Ranjbar, A. M., "
Frequency stability improvement in wind-thermal dominated power grids", IET Gener. Transm. Distrib., Vol. 14, No. 4, pp. 619-627, Feb. 2020,
https://doi.org/10.1049/iet-gtd.2019.0875.
[2] Zhang, X., Liu, H., Fu, Y., Li, Y., "
Virtual shaft control of DFIG based wind turbines for power oscillation suppression", IEEE Trans. Sustainable Energy, Vol. 13, No. 4, pp. 2316-2330, Oct. 2022, doi:
https://doi.org/10.1109/TSTE.2022.3194164.
[3] Ranjbar, S., "Inteliigent Load-Frequency Control of Power System in the Precence of Wing Uncertainty Based on Latin Hyper Square and Particle Swarm Optimization Algorithms", Vol. 12, No.2, pp. 84-97, 2023,
https://doi.org/10.22052/eem.2023.252877.1015.
[5] Serban, I., Ion, C. P., "
Microgrid control based on a grid forming inverter operating as virtual synchronous generator with enhanced dynamic response capability", Int. J. Electr. Power Energy Syst., Vol. 89, pp. 94-105, Jul. 2017,
https://doi.org/10.1016/j.ijepes.2017.01.009.
[6] Yap, K. Y., Sarimuthu, Lim J. M.-Y., "
Virtual inertia-based inverters for mitigating frequency instability in grid-connected renewable energy system: A review", Appl. Sci., Vol. 9, No. 24, p. 5300, Dec. 05, 2019,
https://doi.org/10.3390/app9245300.
[7] Bevrani, H., Francois B., Ise T., Microgrid Dynamics and Control. John Wiley and Sons, Inc., 2017.
[9] Zhong, Q.C., Weiss, G., "
Synchronverters: inverters that mimic synchronous generators", IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 1259-1267, Apr. 2011,
https://doi.org/10.1109/TIE.20102048839.
[10] Liu, J., Miura, Y., Ise T., "
Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators", IEEE Trans. Power Electron., Vol. 31, No. 5, pp. 3600–3611, May 2016,
https://doi.org/10.1109/TPEL.2015.2465852.
[11] Shi, K., Ye, H., Song, W., Zhou, G., "
Virtual inertia control strategy in microgrid based on virtual synchronous generator technology", IEEE Access, Vol. 6, pp. 27949–27957, 2018,
https://doi.org/10.1109/ACCESS.2018.2839737.
[12] Zhao, H., Yang, Q., Zeng, H., "
Multi-loop virtual synchronous generator control of inverter-based DGs under microgrid dynamics", IET Gener. Transm. Distrib., Vol. 11, No. 3, pp. 795–803, Feb. 2017,
https://doi.org/10.1049/iet-gtd.2016.0645.
[13] Wang, G., Fu, L., Hu, Q., Liu, C., Ma, Y., "
Transient synchronization stability of grid-forming converter during grid fault considering transient switched operation mode", IEEE Trans. Sustainable Energy, pp. 111, 2023,
https://doi.org/10.1109/TEC.2023.3283396.
[15] Yap, K. Y., Sarimuthu, C. R., Lim J. M.-Y., "
Virtual inertia-based inverters for mitigating frequency instability in grid-connected renewable energy system: A review", Appl. Sci., Vol. 9, No. 24, p. 5300, Dec. 05, 2019,
https://doi.org/10.3390/app9245300.
[16] Fahad, S., Goudarzi, A., Xiang, J., "
Demand management of active distribution network using coordination of virtual synchronous generators", IEEE Trans. Smart Grid, Vol. 12, No. 1, pp. 250-261, Jan. 2021,
https://doi.org/10.1109/TSTE.2020.2990917.
[17] Kerdphol, T., Watanabe, M., Hongesombut, K., Mitani, Y., "
Self-Adaptive virtual inertia control-based fuzzy logic to improve frequency stability of microgrid with high renewable penetration", IEEE Access, Vol. 7, pp. 76071–76083, 2019,
https://doi.org/10.1109/ACCESS.2019.2920886.
[18] Liu, J., Miura, Y., Bevrani, H., Ise, T., "
Enhanced virtual synchronous generator control for parallel inverters in microgrids", IEEE Trans. Smart Grid, Vol. 8, No. 5, pp. 2268–2277, Sep. 2017,
https://doi.org/10.1109/TSG.2016.2521405.
[19] Zhao, Z., Yang, P., Guerrero, J. M., Xu, Z., Green, T. C., "
Multipletime- scales hierarchical frequency stability control strategy of mediumvoltage isolated microgrid", IEEE Trans. Power Electron., Vol. 31, No. 8, pp. 5974–5991, Aug. 2016,
https://doi.org/10.1109/TPEL.2015.2496869.
[19] Pourmohammad, M., Toulabi, M., Ranjbar, A. M., "Application of state feedback controller to ensure robust D-stable operation of virtual synchronous generators", IEEE Trans. Energy Convers., Vol. 36, No. 2, pp. 602–610, Jun. 2021,
https://doi.org/10.1109/TEC.2020.3018586.
[21] Bordons, C., Garcia-Torres, F., Ridao, M. A., Model Predictive Control of Microgrids. Springer International Publishing, 2020.
[22] Zheng, C., Dragičević, T., Blaabjerg, F., "
Model predictive control-based virtual inertia emulator for an islanded alternating current microgrid", IEEE Trans. Ind. Electron., Vol. 68, No. 8, pp. 7167-7177, Aug. 2021,
https://doi.org/10.1109/TIE.2020.3007105.
[23] Saleh, A., Hasanien, H.M.A., Turky, R., Turdybek, B., Alharbi, M., Jurado, F., Omran, W.A., "Optimal Model Predictive Control for Virtual Inertia Control of Autonomous Microgrids",
Sustainability, Vol. 15, No. 6, Mar, 2023,
https://doi.org/10.3390/su15065009
[24] Oshnoei, S., Aghamohammadi, M.R., Oshnoei, S., Sahoo, S., Fathollahi, A., Khooban, M.H., "A novel virtual inertia control strategy for frequency regulation of islanded microgrid using two-layer multiple model predictive control", Applied Energy, Vol. 343, MAY, 2023, https://doi.org/10.1016/j.apenergy.2023.121233.