Numerical Study on the Effects of Step Fins on Improving the Performance of a Heat Storage Unit in the Presence of a Middle Plate and Porous Medium

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, University of Jiroft, Jiroft, Iran

2 Department of Mechanical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Abstract

In the current paper, the effects of size and direction of step fins on improving the melting process of a vertical triple-tube heat exchange unit in the presence of a middle plate and porous medium are studied. The phase change process of the thermal energy storage unit is simulated using the enthalpy-porosity approach, developed in ANSYS FLUENT 2020 R2. The initial temperature and the temperature of heat transfer fluid, passing through the heat exchange unit, are supposed to be 15 and 50 C, respectively. Furthermore, the Reynolds number of the heat transfer fluid is assumed to be 1000. To evaluate the effects of step fins size and direction on boosting the melting process of the thermal unit, both liquid fraction and temperature contours of the cases with pure and composite PCM were compared. Based on the obtained numerical data, the effects of step fins geometries and direction on improving the thermal performance of the unit in the cases of pure PCM were greater than those of composite PCM. It should also be mentioned that energy storage values of the case with composite PCM (Case 3) increases by 166.69 % compared with that of the case with pure PCM.

Keywords

Main Subjects


[1]   Khanlari, A., Aytaç, İ., Tuncer, A.D., Variyenli, H.İ., Şahin, H.N., "Improving the performance of a PCM integrated solar air collector by adding porous fins over the bottom side of the absorber: A transient CFD study", J Energy Storage, Vol. 90, pp. 111847, 2024. https://doi.org/10.1016/j.est.2024.111847.
[2]   NematpourKeshteli, A., Iasiello, M., Langella, G., Bianco, N., "Using metal foam and nanoparticle additives with different fin shapes for PCM-based thermal storage in flat plate solar collectors", Thermal Science and Engineering Progress, Vol. 52, pp. 102690, 2024. https://doi.org/10.1016/j.tsep.2024.102690.
[3]   Abdulrahman, R.S., Ibrahim, F.A., Dakhil, S.F., "Development of paraffin wax as phase change material based latent heat storage in heat exchanger", Appl Therm Eng, Vol. 150, pp. 193–199, 2019. https://doi.org/10.1016/j.applthermaleng.2018.12.149.
[4]   Sharma, A., Tyagi, V. V, Chen, C.R., Buddhi, D., "Review on thermal energy storage with phase change materials and applications", Renewable and Sustainable Energy Reviews, Vol. 13, pp. 318–345, 2009. https://doi.org/10.1016/j.rser.2007.10.005.
[5]   Jafarian, M., Omid, M., Khanali, M., Mokhtari, M., "Investigation of the Effect of Copper and Aluminiumoxide Nanoparticles on the Thermal Energy Storage Capability of Phase Change Material", Energy Engineering and Management, Vol. 10, pp. 78–89, 2023. https://doi.org/10.22052/10.3.78.
[6]   Dinker, A., Agarwal, M., Agarwal, G.D., "Heat storage materials, geometry and applications: A review", Journal of the Energy Institute, Vol. 90, pp. 1–11, 2017. https://doi.org/10.1016/j.joei.2015.10.002.
[7]   Wang, K., Vafai, K., Li, P., Cen, H., "Forced Convection in a Bidisperse Porous Medium Embedded in a Circular Pipe", J Heat Transfer, Vol. 139, 2017. https://doi.org/10.1115/1.4036574.
[8]   Mohammed, H.I., Talebizadehsardari, P., Mahdi, J.M., Arshad, A., Sciacovelli, A., Giddings, D., "Improved melting of latent heat storage via porous medium and uniform Joule heat generation", J Energy Storage, Vol. 31, pp. 101747, 2020. https://doi.org/10.1016/j.est.2020.101747.
[9]   Zhang, H., Baeyens, J., Cáceres, G., Degrève, J., Lv, Y., "Thermal energy storage: Recent developments and practical aspects", Prog Energy Combust Sci, Vol. 53, pp. 1–40, 2016. https://doi.org/10.1016/j.pecs.2015.10.003.
[10] Nomura, T., Okinaka, N., Akiyama, T., "Impregnation of porous material with phase change material for thermal energy storage", Mater Chem Phys, Vol. 115, pp. 846–850, 2009. https://doi.org/10.1016/j.matchemphys.2009.02.045.
[11] Liu, Z., Yao, Y., Wu, H., "Numerical modeling for solid–liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage", Appl Energy, Vol. 112, pp. 1222–1232, 2013. https://doi.org/10.1016/j.apenergy.2013.02.022.
[12] Zhao, C.Y., Lu, W., Tian, Y., "Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs) ", Solar Energy, Vol. 84, pp. 1402–1412, 2010. https://doi.org/10.1016/j.solener.2010.04.022.
[13] Li, Z., Shahsavar, A., Al-Rashed, A.A.A.A., Talebizadehsardari, P., "Effect of porous medium and nanoparticles presences in a counter-current triple-tube composite porous/nano-PCM system", Appl Therm Eng, Vol. 167, pp. 114777, 2020. https://doi.org/10.1016/j.applthermaleng.2019.114777.
[14] Jaberi, A., Hossainpour, S., Kiyoumarsioskouei, A., "The impact of utilizing porous fins on the performance of PCM melting process in a horizontal Latent Heat Thermal Energy Storage", J Energy Storage, Vol. 97, pp. 112893, 2024. https://doi.org/10.1016/j.est.2024.112893.
[15] Buonomo, B., Manca, O., Nardini, S., Plomitallo, R.E., "Numerical study on latent heat thermal energy storage system with PCM partially filled with aluminum foam in local thermal equilibrium", Renew Energy, Vol. 195, pp. 1368–1380, 2022. https://doi.org/10.1016/j.renene.2022.06.122.
[16] Saini, P., Dhar, A., Powar, S., Doddamani, M., "Cesaro fins parametric optimization for enhancement in the solidification performance of a latent heat storage system with combined fins, foam, and nanoparticle", Energy Reports, Vol. 9, pp. 5670–5687, 2023. https://doi.org/10.1016/j.egyr.2023.04.375.
[17] Iranmanesh, A., Moshizi,S. A., "Enhancing melting and solidification characteristics of a triple-pipe latent heat energy storage system via a wavy central wall with a sinusoidal fixed wavelength", J Energy Storage, Vol. 79, pp. 110218, 2024. https://doi.org/10.1016/j.est.2023.110218.
[18] Abdi, A., Martin, V., Chiu, J.N.W., "Numerical investigation of melting in a cavity with vertically oriented fins", Appl Energy, Vol. 235, pp. 1027–1040, 2019. https://doi.org/10.1016/j.apenergy.2018.11.025.
[19] Nakhchi, M.E., Esfahani, J.A., "Improving the melting performance of PCM thermal energy storage with novel stepped fins", J Energy Storage, Vol. 30, pp. 101424, 2020. https://doi.org/10.1016/j.est.2020.101424.
[20] Agyenim, F., Eames, P., Smyth, M., "Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array", Renew Energy, Vol. 35, pp. 198–207, 2010. https://doi.org/10.1016/j.renene.2009.03.010.
[21] Iranmanesh, A., "Intensifying the melting process of a triple-tube latent heat energy storage unit via inserting a middle plate into the phase change material container", J Energy Storage, Vol. 56, pp. 105982, 2022. https://doi.org/10.1016/j.est.2022.105982.
[22] Mat, S., Al-Abidi, A.A., Sopian, K., Sulaiman, M.Y., Mohammad, A.T., "Enhance heat transfer for PCM melting in triplex tube with internal–external fins", Energy Convers Manag, Vol. 74, pp. 223–236, 2013. https://doi.org/10.1016/j.enconman.2013.05.003.
[23] Mahdi, J.M., Nsofor, E.C., "Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination", Appl Energy, Vol. 191, pp. 22–34, 2017. https://doi.org/10.1016/j.apenergy.2016.11.036.
[24] Zhang, P., Xiao, X., Meng, Z.N., Li, M., "Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement", Appl Energy, Vol. 137, pp. 758–772, 2015. https://doi.org/10.1016/j.apenergy.2014.10.004.