[1] Khanlari, A., Aytaç, İ., Tuncer, A.D., Variyenli, H.İ., Şahin, H.N., "
Improving the performance of a PCM integrated solar air collector by adding porous fins over the bottom side of the absorber: A transient CFD study", J Energy Storage, Vol. 90, pp. 111847, 2024.
https://doi.org/10.1016/j.est.2024.111847.
[2] NematpourKeshteli, A., Iasiello, M., Langella, G., Bianco, N., "
Using metal foam and nanoparticle additives with different fin shapes for PCM-based thermal storage in flat plate solar collectors", Thermal Science and Engineering Progress, Vol. 52, pp. 102690, 2024.
https://doi.org/10.1016/j.tsep.2024.102690.
[3] Abdulrahman, R.S., Ibrahim, F.A., Dakhil, S.F., "
Development of paraffin wax as phase change material based latent heat storage in heat exchanger", Appl Therm Eng, Vol. 150, pp. 193–199, 2019.
https://doi.org/10.1016/j.applthermaleng.2018.12.149.
[4] Sharma, A., Tyagi, V. V, Chen, C.R., Buddhi, D., "
Review on thermal energy storage with phase change materials and applications", Renewable and Sustainable Energy Reviews, Vol. 13, pp. 318–345, 2009.
https://doi.org/10.1016/j.rser.2007.10.005.
[5] Jafarian, M., Omid, M., Khanali, M., Mokhtari, M., "
Investigation of the Effect of Copper and Aluminiumoxide Nanoparticles on the Thermal Energy Storage Capability of Phase Change Material", Energy Engineering and Management, Vol. 10, pp. 78–89, 2023.
https://doi.org/10.22052/10.3.78.
[6] Dinker, A., Agarwal, M., Agarwal, G.D., "
Heat storage materials, geometry and applications: A review", Journal of the Energy Institute, Vol. 90, pp. 1–11, 2017.
https://doi.org/10.1016/j.joei.2015.10.002.
[7] Wang, K., Vafai, K., Li, P., Cen, H., "
Forced Convection in a Bidisperse Porous Medium Embedded in a Circular Pipe", J Heat Transfer, Vol. 139, 2017.
https://doi.org/10.1115/1.4036574.
[8] Mohammed, H.I., Talebizadehsardari, P., Mahdi, J.M., Arshad, A., Sciacovelli, A., Giddings, D., "
Improved melting of latent heat storage via porous medium and uniform Joule heat generation", J Energy Storage, Vol. 31, pp. 101747, 2020.
https://doi.org/10.1016/j.est.2020.101747.
[9] Zhang, H., Baeyens, J., Cáceres, G., Degrève, J., Lv, Y., "
Thermal energy storage: Recent developments and practical aspects", Prog Energy Combust Sci, Vol. 53, pp. 1–40, 2016.
https://doi.org/10.1016/j.pecs.2015.10.003.
[10] Nomura, T., Okinaka, N., Akiyama, T., "
Impregnation of porous material with phase change material for thermal energy storage", Mater Chem Phys, Vol. 115, pp. 846–850, 2009.
https://doi.org/10.1016/j.matchemphys.2009.02.045.
[11] Liu, Z., Yao, Y., Wu, H., "
Numerical modeling for solid–liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage", Appl Energy, Vol. 112, pp. 1222–1232, 2013.
https://doi.org/10.1016/j.apenergy.2013.02.022.
[12] Zhao, C.Y., Lu, W., Tian, Y., "
Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs) ", Solar Energy, Vol. 84, pp. 1402–1412, 2010.
https://doi.org/10.1016/j.solener.2010.04.022.
[13] Li, Z., Shahsavar, A., Al-Rashed, A.A.A.A., Talebizadehsardari, P., "
Effect of porous medium and nanoparticles presences in a counter-current triple-tube composite porous/nano-PCM system", Appl Therm Eng, Vol. 167, pp. 114777, 2020.
https://doi.org/10.1016/j.applthermaleng.2019.114777.
[14] Jaberi, A., Hossainpour, S., Kiyoumarsioskouei, A., "
The impact of utilizing porous fins on the performance of PCM melting process in a horizontal Latent Heat Thermal Energy Storage", J Energy Storage, Vol. 97, pp. 112893, 2024.
https://doi.org/10.1016/j.est.2024.112893.
[15] Buonomo, B., Manca, O., Nardini, S., Plomitallo, R.E., "
Numerical study on latent heat thermal energy storage system with PCM partially filled with aluminum foam in local thermal equilibrium", Renew Energy, Vol. 195, pp. 1368–1380, 2022.
https://doi.org/10.1016/j.renene.2022.06.122.
[16] Saini, P., Dhar, A., Powar, S., Doddamani, M., "
Cesaro fins parametric optimization for enhancement in the solidification performance of a latent heat storage system with combined fins, foam, and nanoparticle", Energy Reports, Vol. 9, pp. 5670–5687, 2023.
https://doi.org/10.1016/j.egyr.2023.04.375.
[17] Iranmanesh, A., Moshizi,S. A., "
Enhancing melting and solidification characteristics of a triple-pipe latent heat energy storage system via a wavy central wall with a sinusoidal fixed wavelength", J Energy Storage, Vol. 79, pp. 110218, 2024.
https://doi.org/10.1016/j.est.2023.110218.
[18] Abdi, A., Martin, V., Chiu, J.N.W., "
Numerical investigation of melting in a cavity with vertically oriented fins", Appl Energy, Vol. 235, pp. 1027–1040, 2019.
https://doi.org/10.1016/j.apenergy.2018.11.025.
[19] Nakhchi, M.E., Esfahani, J.A., "
Improving the melting performance of PCM thermal energy storage with novel stepped fins", J Energy Storage, Vol. 30, pp. 101424, 2020.
https://doi.org/10.1016/j.est.2020.101424.
[20] Agyenim, F., Eames, P., Smyth, M., "
Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array", Renew Energy, Vol. 35, pp. 198–207, 2010.
https://doi.org/10.1016/j.renene.2009.03.010.
[21] Iranmanesh, A., "
Intensifying the melting process of a triple-tube latent heat energy storage unit via inserting a middle plate into the phase change material container", J Energy Storage, Vol. 56, pp. 105982, 2022.
https://doi.org/10.1016/j.est.2022.105982.
[22] Mat, S., Al-Abidi, A.A., Sopian, K., Sulaiman, M.Y., Mohammad, A.T., "
Enhance heat transfer for PCM melting in triplex tube with internal–external fins", Energy Convers Manag, Vol. 74, pp. 223–236, 2013.
https://doi.org/10.1016/j.enconman.2013.05.003.
[23] Mahdi, J.M., Nsofor, E.C., "
Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination", Appl Energy, Vol. 191, pp. 22–34, 2017.
https://doi.org/10.1016/j.apenergy.2016.11.036.
[24] Zhang, P., Xiao, X., Meng, Z.N., Li, M., "
Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement", Appl Energy, Vol. 137, pp. 758–772, 2015.
https://doi.org/10.1016/j.apenergy.2014.10.004.