A Mixed-Integer Linear Programming Model for Multi-Objective Dynamic Transmission Network Expansion Planning Considering Voltage Stability

Document Type : Original Article

Authors

1 Department of Electrical Engineering, Faculty of Engineering, University of Zanjan, Zanjan, Iran

2 Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran

3 Modje Niroo Co.,Zanjan Regional Electric Company, Iran

Abstract

Regarding the load increase, transmission network expansion planning (TNEP) is of vital importance. The aim of TNEP is to determine the installation, location, and time of equipment, including lines and transformers. On the other side, network security and voltage stability is one of main challenges of power systems. In this paper, it is focused on dynamic transmission network expansion planning by considering voltage stability constraint. The proposed model tries to minimize total expansion cost and maximize voltage stability margin. To make the TNEP more accurate, the annual load duration curve has been considered for the loads. The developed model uses loading margin for the voltage stability analysis, and the optimization problem has been solved based on AC power flow and MILP model. The problem is modeled as a multi-objective optimization where fuzzy satisfaction technique is employed to choose the final solution. Applying the proposed model on the IEEE 24-bus system within the GAMS environment demonstrate efficiency of the conducted approach in increasing voltage stability in TNEP.

Keywords

Main Subjects


[1] Seifi, H., Sepasian, MS., "Electric power system planning: issues, algorithms and solutions", Vol. 49. Berlin: Springer, 2011, https://doi.org/10.1007/978-3-642-17989-1.
[2] Lumbreras, S., Ramos, A., "The new challenges to transmission expansion planning. Survey of recent practice and literature review", Elect. Power Syst. Res., Vol. 134, pp. 19-29, May. 2016, https://doi.org/10.1016/j.epsr.2015.10.013
[3] Mahdavi, M., Antunez, CS. Ajalli, M., Romero, R., "Transmission expansion planning: Literature review and classification." IEEE Syst. Journal, Vol. 13, No. 3, pp. 3129-3140, Sep. 2019, https://doi.org/10.1109/JSYST.2018.2871793.
[4] Mahdavi, M., Sabillon, C., Bagheri, Romero, R., "Line maintenance within transmission expansion planning: A multistage framework", IET Gener., Transm. Distr. Vol. 13, No. 14 (2019): 3057-3065, https://doi.org/10.1049/iet-gtd.2018.5124.
[5] Mahdavi, M., Monsef, H., Romero, H., "Reliability effects of maintenance on TNEP considering preventive and corrective repairs", IEEE Trans. Power Syst., Vol. 32, No. 5, pp. 3768-3781, Sep. 2017.
[6] Li, C., Antonio J. Conejo, Liu, P. Benjamin Omell P., Siirola J.D., Grossmann, I.E., "Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems", European J. Oper. Res. Vol. 297, No. 3, pp.1071-1082, March 2022, https://doi.org/10.1016/j.ejor.2021.06.024.
[7] Yuan, Y., Cheng, H., Zhang, H., Wang, Z., Zhou, W., "Transmission expansion planning with optimal transmission switching considering uncertain n-k contingency and renewables", Energy Reports, Vol. 8, pp. 573-583, Aug. 2022, https://doi.org/10.1016/j.egyr.2022.02.241
[8] Gomes, P. V., Saraiva. J.T., "State-of-the-art of transmission expansion planning: A survey from restructuring to renewable and distributed electricity markets", Int. J. Elect. Power & Energ. Syst., Vol. 111 pp. 411-424, Oct. 2019, https://doi.org/10.1016/j.ijepes.2019.04.035.
[9] Shayeghi, H., Bagheri, A., "Dynamic sub-transmission system expansion planning incorporating distributed generation using hybrid DCGA and LP technique", Int. J. Elect. Power & Energ. Syst., Vol. 48, pp. 111-122, June 2013, https://doi.org/10.1016/j.ijepes.2012.11.029.
[10] Roldán, C., Nieta, A.A.S., García-Bertrand, R., Mínguez, R., "Robust dynamic transmission and renewable generation expansion planning: walking towards sustainable systems", Int. J. Elect. Power & Energ. Syst., Vol. 96, pp. 52-63, March 2018, https://doi.org/10.1016/j.ijepes.2017.09.021
[11] Farrag, M., Kareem Mohamed A., Omran, S., "AC load flow based model for transmission expansion planning", Elect. Power Syst. Res., Vol. 171, pp. 26-35, Jun. 2019, https://doi.org/10.1016/j.epsr.2019.02.006.
[12] Zhang, X., Conejo, A.J., "Robust transmission expansion planning representing long-and short-term uncertainty", IEEE Trans. Power Syst., Vol. 33, No. 2, pp. 1329-1338, Jun. 2017, https://doi.org/10.1109/TPWRS.2017.2717944.
[13] Naderi, E., Pourakbari-Kasmaei, M., Lehtonen, M., "Transmission expansion planning integrated with wind farms: A review, comparative study, and a novel profound search approach", Int. J. Elect. Power & Energ. Syst., Vol. 115, pp. 105460, Feb. 2020, https://doi.org/10.1016/j.ijepes.2019.105460.
[14] Gonzalez‐Romero, I.C., Wogrin, S., Gómez, T., "Review on generation and transmission expansion coplanning models under a market environment", IET Gener. Transm. Distr., Vol. 14, No. 6, pp. 931-944, Aug. 2019, https://doi.org/10.1049/iet-gtd.2019.0123.
[15] Hamidpour, H., Pirouzi, S., Safaee, S. Norouzi, N., Lehtonen, M., "Multi-objective resilient-constrained generation and transmission expansion planning against natural disasters", Int. J. Elect. Power & Energ. Syst., Vol. 132, pp. 107193, Nov. 2021, https://doi.org/10.1016/j.ijepes.2021.107193.
[16] Miranda, F. L., Leonardo, W., Oliveira, Oliveira, E.J., Nepomuceno, E.G., Dias, B.H., "Multi-objective transmission expansion planning based on Pareto dominance and neural networks", Elect. Power Syst. Res., Vol. 214, pp. 108864, Jan. 2023, https://doi.org/10.1016/j.epsr.2022.108864.
[17] Mazaheri, H., Abbaspour, A., Fotuhi‐Firuzabad, Moeini‐Aghtaie, M., Farzin, H., Wang, F., Dehghanian, P., "An online method for MILP coplanning model of largescale transmission expansion planning and energy storage systems considering N1 criterion", IET Gener. Transm. Distr., Vol. 15, No. 4, pp. 664-677, Dec. 2020, https://doi.org/10.1049/gtd2.12050.
[18] Zoppei, R. Marcos, T., Delgado, A.J., Macedo, L.H., Marcos, Rider, J., Romero, R., "A branch and bound algorithm for transmission network expansion planning using nonconvex mixed-integer nonlinear programming models", IEEE Access, Vol. 10, pp. 39875-39888, April 2022, https://doi.org/10.1109/ACCESS.2022.3166153.
[19] Abdi, H., Moradi, M., Lumbreras, S., "Metaheuristics and transmission expansion planning: A comparative case study." Energies, Vol. 14, No. 12, pp. 3618, June 2021, https://doi.org/10.3390/en14123618.
[20] Vilaça, P., Street, A., Colmenar, J.M., "A MILP-based heuristic algorithm for transmission expansion planning problems", Elect. Power Syst. Res, .Vol. 208, pp. 107882, July 2022, https://doi.org/10.1016/j.epsr.2022.107882.
[21] Modarresi, J., Gholipour, E., Khodabakhshian, A., "A comprehensive review of the voltage stability indices", Renew. Sust. Energy Reviews, Vol. 63, pp. 1-12, Sep. 2016.
[22] Nageswa Rao, Priya Vijaya, A.R., Kowsalya, M., "Voltage stability indices for stability assessment: a review", Int. J. Ambient Energ., Vol. 42, No. 7, pp. 829-845, Nov. 2018, https://doi.org/10.1080/01430750.2018.1525585.
[23] Wang, Yi, Cheng, H., Wang, C., Hu, Z., Yao, L., Zeliang Ma, Z., Zh, Z., "Pareto optimality-based multi-objective transmission planning considering transmission congestion", Elect. Power Syst. Res. Vol. 78, No. 9, pp.1619-1626, Sep. 2008, https://doi.org/10.1016/j.epsr.2008.02.004..
[24] Zhang, Hui, Vittal, V., Heydt, G.T., Quintero, J., "A mixed-integer linear programming approach for multi-stage security-constrained transmission expansion planning", IEEE Trans. Power Syst., Vol. 27, No. 2, pp. 1125-1133, May 2012, https://doi.org/10.1109/TPWRS.2011.2178000.
[25] Khakpoor, M., Jafari‐Nokandi, M., Abdoos, A.A., "Dynamic generation and transmission expansion planning in the power market–based on a multiobjective framework", Int. Trans. Elect. Energ. Syst., Vol. 27, No. 9, pp. e2353, May 2017, https://doi.org/10.1002/etep.2353.
[26] Morquecho, E.G., Torres, S.P., Astudillo-Salinas, F., Castro, C.A., Ergun, H., Hertem, D.V., "Security constrained AC dynamic transmission expansion planning considering reactive power requirements", Elect. Power Syst. Res., Vol. 221, pp. 109419, Aug. 2023, https://doi.org/10.1016/j.epsr.2023.109419.
[27] Ledezma, L.F.F., Alcaraz, G.G., "Hybrid binary PSO for transmission expansion planning considering N-1 security criterion", IEEE Latin America Trans., Vol 18, No. 03 pp. 545-553, March 2023, https://doi.org/10.1016/j.ijepes.2021.107637.
[28] Moradi, R.A., Zeinali Davarani, R., "Introducing a new index to investigate voltage stability of power systems under actual operating conditions", Int. J. Elect. Power & Energ. Syst., 13 Vol. 6, pp. 107637, March 2022, https://doi.org/10.1016/j.ijepes.2021.107637.
[29] Mokred, S., Wang, Y., Chen, T. "A novel collapse prediction index for voltage stability analysis and contingency ranking in power systems", Protec. Cont. Modern Power Syst., Vol. 8, No. 1, pp. 7, Feb. 2023, https://doi.org/10.1016/j.ijepes.2021.107637.
[30] Akbari, T., Rahimi-Kian, A., Tavakoli Bina, M., "Security-constrained transmission expansion planning: A stochastic multi-objective approach", Int. J. Elect. Power & Energ. Syst., Vol. 43, No. 1, pp. 444-453, Dec. 2012, https://doi.org/10.1016/j.ijepes.2012.05.058.
[31] Esmaili, M., Ghamsari-Yazdel, M., Amjady, N., Chung, C. Y., Conejo, A.J., "Transmission expansion planning including TCSCs and SFCLs: A MINLP approach." IEEE Trans. Power Syst., Vol. 35, No. 6, pp. 4396-4407, Nov. 2020, https://doi.org/10.1109/TPWRS.2020.2987982.
[32] Das, S., Verma, A., Bijwe, P.R., "Efficient multi-year security constrained AC transmission network expansion planning", Elect. Power Syst. Res., Vol. 187, pp. 106507, Oct. 2020, https://doi.org/10.1016/j.epsr.2020.106507.
[33] Ihamrouni, I., Salem, M., Mohd Khairi, R., Siano, P., "Bacterial Foraging Algorithm & Demand Response Programs for a Probabilistic Transmission Expansion Planning With the Consideration of Uncertainties and Voltage Stability Index", IEEE Canadian J. Elect. Comput. Eng., Vol., 44, No. 2, pp. 179-188, March 2021, https://doi.org/10.1109/ICJECE.2020.3039249.
[34] Khandelwal, A., Bhargava, A., Sharma, A., "Voltage stability constrained transmission network expansion planning using fast convergent grey wolf optimization algorithm", Evolutionary Intelligence, Vol. 14, No. 3, pp.: 1261-1270, Jan. 2021, https://doi.org/10.1007/s12065-019-00200-1.
[35] Mohammadniaei, M., Namdari, F., Shakarami, M.R., Hatamvand, L., "A Nonlinear Voltage Stability Index Based on Vector Analysis Method and Measurements of Active and Reactive Powers of Power System", Energy Engineering and Management, Vol. 12, No. 1, pp. 28-41, April 2022, In Persian., https://doi.org/10.22052/12.1.28.
[36] Sheikh, M., Aghaei, J. Letafat, A., Rajabdorri, M., Niknam, T., Shafie-Khah, M., Catalão, J. PS., "Security-constrained unit commitment problem with transmission switching reliability and dynamic thermal line rating", IEEE Syst. Journal, Vol. 13, No. 4, pp. 3933-3943, Dec. 2019, https://doi.org/10.1109/JSYST.2019.2939210.
[37] Soroudi, A., Power system optimization modeling in GAMS. Vol. 78. Berlin/Heidelberg, Germany: Springer, 2017, https://doi.org/10.1007/978-3-319-62350-4.
[38] Ordoudis, C., Pinson, P., Morales, J.M., Zugno, M., "An updated version of the IEEE RTS 24-bus system for electricity market and power system operation studies", Technical University of Denmark, Vol. 13, 2016.
[39] Akhlaghi, M., Moravej, Z., Bagheri, A., "Maximizing wind energy utilization in smart power systems using a flexible network-constrained unit commitment through dynamic lines and transformers rating", Energy, Vol. 261, pp. 124918, Dec. 2022, https://doi.org/10.1016/j.energy.2022.124918.
[40] Huang, Y., Hou, W., Huang, Y., Li, J., Li, Q., Wang, D., Zhang, Y., "Multi-objective optimal operation for steam power scheduling based on economic and exergetic analysis", Energies, Vol. 13, No. 8, pp. 1886, Apr. 2020, https://doi.org/10.3390/en13081886.