A Synthesis and an Investigation of Crystalline, Morphological and Optical Properties of CFTS Symmetric Quaternary Stannite Semiconductor Structures for Use in New-Generation Solar Cells

Document Type : Original Article

Authors

1 Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran

Abstract

CFTS semiconductor particles with the structure of Cu2FeSnS4 have attracted the attention of researchers as one of the newest materials in the field of absorber layer of thin film solar cells and interlayer layer in perovskite solar cells. This P-type structure has greatly raised the hopes to achieve an efficient low-cost structure due to the use of abundant elements in the earth's crust, direct band gap in the range of solar radiation intensity, and high absorption coefficient (104 cm−1). The synthesis of CFTS semiconductor nanoparticles was performed through a solvothermal process with simple and cheap precursors. The degree of crystallinity and the direction of crystal growth of the structure were evaluated by XRD analysis. The topography of the particles was carried out through a field emission scanning electron microscope (FE-SEM), and the percentage of the elements of the structure was determined through EDS analysis. The band gap of the particles was calculated through UV-Vis spectroscopy and the absorption spectrum of the structure. The results of the XRD analysis indicated the formation of a structure with high purity and a favorable degree of crystallinity. The average size of the particles was obtained to be in the range of 1-2 µm, and the particles were uniform spheres with a sheet-like surface. The results of EDS analysis indicated an optimal percentage of structural elements and a band gap of particles in the range of 1.43 eV, indicating good agreement with the reported values.

Keywords

Main Subjects


[1] Yu, J., Deng, H., Zhang, Q., Tao, J., Sun, L., Yang, P., Chu, J., "The role of tuning Se/(S+ Se) ratio in the improvement of Cu2MnSn (S, Se) 4 thin films properties and photovoltaic device performance", Solar Energy, Vol. 179, pp. 279-285, 2019 https://doi.org/10.1016/j.solener.2018.12.076
[2] Zahedifar, M., Ghanbari, E., Moradi, M., Saadat, M., "Optimized annealing regime of CuGaSe2 nanoparticles prepared by solvothermal method", physica status solidi (a), Vol. 212, No. 3, pp. 657-661, 2015. https://doi.org/10.1002/pssa.201431543
[3] Talebi, B., Moradi, M., "Solvothermal synthesis of CMTS quaternary semiconductor nanoparticles with a symmetric kesterite structure: The role of the autoclave filling factor", Nano-Structures & Nano-Objects, Vol 35, 101008, 2023. ‏ https://doi.org/10.1016/j.nanoso.2023.101008
[4] Saadat, M., Amiri, O., Mahmood, P., "Analysis and performance assessment of CuSbS2-based thin-film solar cells with different buffer layers", The European Physical Journal Plus, Vol. 137, No. 5, p. 582, 2022. https://doi.org/10.1140/epjp/s13360-022-02804-6
[5] Moradi, M., Teimouri, R., Saadat, M., Zahedifar, M., "Buffer layer replacement: a method for increasing the conversion efficiency of CIGS thin film solar cells", Optik, Vol. 136, pp. 222-227, 2017. https://doi.org/10.1016/j.ijleo.2017.02.037
[6] Talebizadeh, P., Mehrabian, M.A., Abdolzadeh, M., "Effect of solar angles on incident energy of the flat collectors", Energy Engineering and Management, Vol. 2, No. 4, pp. 12-23, 2013. https://energy.kashanu.ac.ir/article_113302.html
[7] Khorasanizadeh, H., Meschi, S.M. "Determination of the monthly, seasonal, semi-yearly and yearly optimum tilt angles of flat plate solar collectors in Kashan", Energy Engineering and Management, Vol. 3, No. 4, pp. 38-49, 2014.(In Persian) https://energy.kashanu.ac.ir/article_113329.html
[8] Ahmadzadehtalatapeh, M., "Application of solar thermal collectors to improve the energy performance of the fresh air HVAC systems", Energy Engineering and Management, Vol. 6, No. 4, pp. 44-53, 2016. https://energy.kashanu.ac.ir/article_113402.html
[9] Ghorbani, T., Zahedifar, M., Moradi, M., Ghanbari, E., "Efficiency enhancement of CIGS solar cells with the appropriate combination of CdS and CdSe buffer layers: simulation by silvaco software", Energy Engineering and Management, Vol. 12, No. 3, pp. 122-129, 2022.(In Persian) https://doi.org/10.22052/12.3.122
[10] Rajabi, Z., Moradi, M., Zahedifar, M., "Back contact selenization and absorber layer etching for improvement in Schottky diode behavior of [Mo/CIGS/Al] structure", Materials Research Express, Vol. 6, No. 6, p. 065501, 2019. https://doi.org/10.1016/j.ijleo.2017.02.037
[11] Saadat, M., Amiri, O., "Fine adjusting of charge carriers transport in absorber/HTL interface in Sb2 (S, Se) 3 solar cells", Solar Energy, Vol. 243, pp. 163-173, 2022. https://doi.org/10.1016/j.solener.2022.07.047
[12] Saadat, M., Moradi, M., Zahedifar, M., "Optimization of Zn (O, S)/(Zn, Mg) O buffer layer in Cu (In, Ga) Se 2 based photovoltaic cells", Journal of Materials Science: Materials in Electronics, Vol. 27, pp. 1130-1133, 2016. https://doi.org/10.1007/s10854-015-3861-y
[13] Moradi, M., Teimouri, R., Zahedifar, M., Saadat, M., "Optimization of Cd1− yZnyS buffer layer in Cu (In, Ga) Se2 based thin film solar cells", Optik, Vol. 127, No. 8, pp. 4072-4075, 2016. https://doi.org/10.1016/j.ijleo.2016.01.100
[14] Saadat, M., Amiri, O., Mahmood, P.H., "Potential efficiency improvement of CuSb (S1-x, Sex) 2 thin film solar cells by the Zn (O, S) buffer layer optimization", Solar energy, Vol. 225, pp. 875-881, 2021. https://doi.org/10.1016/j.ijleo.2016.01.100
[15] Saadat, M., Amiri, O., Rahdar, A., "Optimization of (Zn, Sn) O buffer layer in Cu (In, Ga) Se2 based solar cells", Solar Energy, Vol. 189, pp. 464-470, 2019. https://doi.org/10.1016/j.solener.2019.07.093
[16] Saadat, M., Moradi, M., Zahedifar, M., "CIGS absorber layer with double grading Ga profile for highly efficient solar cells", Superlattices and Microstructures, Vol. 92, pp. 303-307, 2016. https://doi.org/10.1016/j.spmi.2016.02.036
[17] Gershon, T., Bishop, D., Antunez, P., Singh, S., Brew, K.W., Lee, Y.S., Gunawan, O., Gokmen, T., Todorov, T., Haight, R., "Unconventional kesterites: The quest to reduce band tailing in CZTSSe", Current Opinion in Green and Sustainable Chemistry, Vol. 4, pp. 29-36, 2017. https://doi.org/10.1016/j.cogsc.2017.01.003
[18] Guo, L., Zhu, Y., Gunawan, O., Gokmen, T., Deline, V.R., Ahmed, S., Romankiw, L.T., Deligianni, H., "Electrodeposited Cu2ZnSnSe4 thin film solar cell with 7% power conversion efficiency", Progress in Photovoltaics: Research and Applications, Vol. 22, No. 1, pp. 58-68, 2014. https://doi.org/10.1002/pip.2332
[19] Li, J., Kim, S., Nam, D., Liu, X., Kim, J., Cheong, H., Liu, W., Li, H., Sun, Y., Zhang, Y., "Tailoring the defects and carrier density for beyond 10% efficient CZTSe thin film solar cells", Solar Energy Materials and Solar Cells, Vol. 159, pp. 447-455, 2017. https://doi.org/10.1016/j.solmat.2016.09.034
[20] Haghighi, M., Minbashi, M., Taghavinia, N., Kim, D.-H., Mahdavi, S.M., Kordbacheh, A.A., "A modeling study on utilizing SnS2 as the buffer layer of CZT (S, Se) solar cells", Solar Energy, Vol. 167, pp. 165-171, 2018. https://doi.org/10.1016/j.solener.2018.04.010
[21] Adelifard, M., "Preparation and characterization of Cu2FeSnS4 quaternary semiconductor thin films via the spray pyrolysis technique for photovoltaic applications", Journal of analytical and applied pyrolysis, Vol. 122, pp. 209-215, 2016. https://doi.org/10.1016/j.jaap.2016.09.022
[22] Ozel, F., Aslan, E., Istanbullu, B., Akay, O., Patir, I.H., "Photocatalytic hydrogen evolution based on Cu2ZnSnS4, Cu2NiSnS4 and Cu2CoSnS4 nanocrystals", Applied Catalysis B: Environmental, Vol. 198, pp. 67-73, 2016. https://doi.org/10.1016/j.apcatb.2016.05.053
[23] Madhusudanan, S.P., Kumar, M.S., Mohanta, K., Batabyal, S.K., "Photoactive Cu2FeSnS4 thin films: Influence of stabilizers", Applied Surface Science, Vol. 535, p. 147600, 2021. https://doi.org/10.1016/j.apsusc.2020.147600
[24] Wang, S., Ma, R., Wang, C., Li, S., Wang, H., "Incorporation of Rb cations into Cu2FeSnS4 thin films improves structure and morphology", Materials Letters, Vol. 202, pp. 36-38, 2017. https://doi.org/10.1016/j.matlet.2017.05.079
[25] Meng, X., Deng, H., Tao, J., Cao, H., Li, X., Sun, L., Yang, P., Chu, J., "Heating rate tuning in structure, morphology and electricity properties of Cu2FeSnS4 thin films prepared by sulfurization of metallic precursors", Journal of Alloys and Compounds, Vol. 680, pp. 446-451, 2016. https://doi.org/10.1016/j.jallcom.2016.04.166
[26] Wang, S., Ma, R., Wang, C., Li, S., Wang, H., "Fabrication and photoelectric properties of Cu2FeSnS4 (CFTS) and Cu2FeSn (S, Se) 4 (CFTSSe) thin films", Applied Surface Science, Vol. 422, pp. 39-45, 2017. https://doi.org/10.1016/j.apsusc.2017.05.244
[27] Chatterjee, S., Pal, A.J., "A solution approach to p-type Cu2FeSnS4 thin-films and pn-junction solar cells: role of electron selective materials on their performance", Solar Energy Materials and Solar Cells, Vol. 160, pp. 233-240, 2017. https://doi.org/10.1016/j.solmat.2016.10.037
[28] Kumar, M.S., Madhusudanan, S.P., Batabyal, S.K., "Substitution of Zn in EarthAbundant Cu2ZnSn (S, Se) 4 based thin film solar cells–A status review", Solar Energy Materials and Solar Cells, Vol. 185, pp. 287-299, 2018. https://doi.org/10.1016/j.solmat.2018.05.003
[29] Vanalakar, S.A., Patil, P.S., Kim, J.H., "Recent advances in synthesis of Cu2FeSnS4 materials for solar cell applications: a review", Solar Energy Materials and Solar Cells, Vol. 182, pp. 204-219, 2018. https://doi.org/10.1016/j.solmat.2018.03.021
[30] Khadka, D.B., Kim, J., "Structural transition and band gap tuning of Cu2 (Zn, Fe) SnS4 chalcogenide for photovoltaic application", The Journal of Physical Chemistry C, Vol. 118, No. 26, pp. 14227-14237, 2014. https://doi.org/10.1021/jp503678h
[31] Hall, S., Szymanski, J., Stewart, J., "Kesterite, Cu< 2)(Zn, Fe) SnS< 4), and stannite, Cu< 2)(Fe, Zn) SnS< 4), structurally similar but distinct minerals", The Canadian Mineralogist, Vol. 16, No. 2, pp. 131-137, 1978. https://doi.org/10.2113/gscanmin.41.3.639
[32] Gao, Y., Long, F., Wang, J., Zhang, J., Mo, S., Zou, Z., "Understanding the growth mechanism of wurtzite Cu2ZnSnS4 nanocrystals and the photodegradation properties", Materials & Design, Vol. 123, pp. 24-31, 2017. https://doi.org/10.1016/j.matdes.2017.03.012